Low HDL makes Dr. Friedewald a liar

There's a $22 billion industry based on treating LDL cholesterol, a fictitious number.

LDL cholesterol is calculated from the following equation:

LDL cholesterol = Total cholesterol - HDL cholesterol - triglycerides/5

So when your doctor tells you that your LDL cholesterol is X, 99% of the time it has been calculated. This is based on the empiric calculation developed by Dr. Friedwald in the 1960s. Back then, it was a reasonable solution, just like bacon and eggs was a reasonable breakfast and a '62 Rambler was a reasonable automobile.

One of the problems with Dr. Friedewald's calculation is that the lower HDL cholesterol, the less accurate LDL cholesterol becomes. If it were just a few points, so what? But what if it were commonly 50 to 100 mg/dl inaccurate? In other words, your doctor tells you that your LDL is 120 mg/dl, but the real number is somewhere between 170 and 220 mg/dl. Does this happen?

You bet it does. In my experience, it is an everyday event. In fact, I'm actually surprised when the Friedewald calculated LDL closely approximates true LDL--it's the exception.

Dr. Friedewald would likely have explained that, when applied to a large population of, say, 10,000 people, calculated LDL is a good representation of true LDL. However, just like saying that the average weight for an American woman is 176 lbs (that's true, by the way), does that mean if you weigh 125 lbs that you are "off" by 41 lbs? No, but it shows how you cannot apply the statistical observations made in large populations to a single individual.

The lower HDL goes, the more inaccurate LDL becomes. This would be acceptable if most HDLs still permitted reasonable estimation of LDL--but it does not. LDL begins to become significantly inaccurate with HDL below 60 mg/dl.

How to get around this antiquated formula? In order of most accurate to least accurate:

--LDL particle number (NMR)--the most accurate by far.

--Apoprotein B--available in most laboratories.

--"Direct" LDL

--Non-HDL--i.e., the calculation of total cholesterol minus HDL. But it's still a calculated with built-in flaws.

--LDL by Friedewald calculation.

My personal view: you need to get an NMR if you want to know what your LDL truly is. A month of Lipitor costs around $80-120. A basic NMR costs less than $90. It's a relative bargain.

Menopause unleashes lipoprotein(a)

Faye was clearly frustrated.

At age 52, she was having chest pains every day. A CT heart scan showed a score of zero. A CT coronary angiogram showed no plaque whatsoever.

"Everything went downhill when my menopause started. I gained weight, I started to have chest pains, my blood pressure went up, my cholesterol shot up."

She saw three physicians, none of whom shed much light on the situation. They ran through the predictable sequence of (horse, not human) estrogens, anti-depressants, suggestions for psychological counseling.

But we checked Faye for lipoprotein(a), which she proved to have at a high level of 182 nmol/l. This explained a lot.

A curious and predictable set of phenomenon occur to females with Lp(a) proceeding through the menopause. As estrogen recedes:

--Lp(a) levels rise dramatically.

--Blood pressure goes up, sometimes creating severe hypertension by mid- to late-50s.

--Chest pain can develop, presumably due to "endothelial dysfunction" or "microvascular angina", both representing abnormal coronary artery constriction facilitated by worsening expression of Lp(a).

All too often, these phenomena get dismissed as simply part of the menopausal package, when they are, in fact, important facets of this very important genetic pattern that confers high risk for heart disease.

If any of this rings familiar for you or a loved one, think Lp(a). Though Faye hadn't yet developed any measurable coronary plaque by her CT heart scan score, it was likely on its way, given the surge in Lp(a) expression as menopause unfolded--unless its recognized and appropriate preventive action taken.

Vitamin D must be oil-based

I've talked about this before, but I need to periodically remind everybody:
Vitamin D must be an oil-based capsule, a gel-cap, not a tablet.

Lisa is one of early success stories: a heart scan score of 447 in her early 40's, modest reduction of CT heart scan score three years ago.

However, Lisa had a difficult time locating oil-based vitamin D. There has, in fact, been a national run on vitamin D and I'm told that even manufacturers are scrambling to keep up with the booming demand. So, she bought tablets instead and was taking 3000 units per day.

She came in for a routine check. Lisa's 25-OH-vitamin D3: 17 ng/ml, signifying severe deficiency, the same as if she were taking nothing at all. (Recall that we aim for 50 ng/ml.)

In other words, vitamin D tablets do not work. It is shameful. I see numerous women taking calcium tablets with D--the vitamin D does not work. I've actually seen blood levels of zero on these preparations.

You may have to look, but if you want to enjoy the extraordinary benefits of vitamin D replacement, it must be an oil-based capsule. Carlson's and Vitamin Shoppe have excellent prepartions. They raise blood levels substantially and consistently, and they're inexpensive. We pay $5.99 for a bottle of 120 capsules.

Vitamin D for $200?

What if vitamin D cost $200 rather than $2?

In other words, what if cholecalciferol, or vitamin D3, was a patent-protectable agent that would sell for an extravagant price, just like a drug?

Vitamin D would be the hot topic. There would be TV ads run during Oprah, slick magazine two-page spreads with experts touting its outsized benefits, insurance companies would battle over how much your copay should be.

The manufacturer would host large fancy symposia to educate physicians on how wonderful vitamin D is for treatment of numerous conditions, complete with dinner, a show, and gifts. They would hire expert speakers to speak, scientists to have articles ghost-written, give out knick knacks with the brand label inscribed--just like Lipitor, Actos, Vytorin, ReoPro, Plavix . . .

After all, what other "drug" substantially increases bone density (up to 20% in adult females), enhances insulin responses 30% (equivalent to the TZD drugs, Actos and Avandia), and slashes colon cancer risk?

But it's not a drug. That is both vitamin D's strength and its weakness. It's a strong point because it's natural, phenomenally helpful across a variety of conditions, and inexpensive. It is also a weakness because, at $2 a month, no one is raking in the $12 billion annually that Pfizer makes for Lipitor that allows it to fund an enormous marketing campaign.

Vitamin D is a "discovery" of huge importance for health, including making reductions of CT heart scan scores far more likely for more people. And it comes without a prescription.

What's up with garlic?


Fanatic Cook has posted an excellent summary on the recent negative attention cast on garlic preparations, at least for LDL cholesterol reduction.

Go to http://fanaticcook.blogspot.com to view.

I think Fanatic Cook is right--despite the lack of LDL reducing effects, it doesn't necessarily mean no benefit whatsoever. Anti-coagulation and anti-inflammatory effects, in particular, are well proven.

I do think, however, that it argues more in favor of sticking to whole cloves, rather than supplements. The benefits are also likely small. I would view garlic as a soft advantage for your plaque control program. You can do fine without it. You might do slightly better with it.

Drop the pretense

Most hospitals maintain the "Saint _____" in their names, despite many having little or nothing to do with the church.

Out of 15 hospitals in my area, 13 are named after saints.

In my view, a more honest name would be something like "ABC Medical Enterprises, Inc." The profit motive, aggressive marketing tactics, and high CEO salaries would make better sense then. The trend to convert practicing physicians from professionals acting on behalf of patient welfare into paid employees would also be clearer.

Imagine Walmart were to change its name to "St. Mary's Emporium" Would it modify your perception of their business? I think it would. It would cause many people to believe that maybe their work was, at least in part, charitable and being done for the public welfare. But Walmart makes such pretense--they are in business for profit, just like all businesses.

It's time for the pretense to be dropped. Hospitals are cut-throat profit-seeking operations, operating under the guise of charitable, tax-free institutions. It's the farthest thing from the truth.

John Cannell on Vitamin D

You can always count on Dr. John Cannell for unique perspectives on vitamin D. I reprint here his unfailingly entertaining and informative Vitamin D Newsletter on whether vitamin D replacement enhances physical performance.

The whole vitamin D "discovery" sometimes worries me. Vitamin D has proven to be an unbelievable, remarkable, dramatic boon to health, including facilitation in dropping CT heart scan scores. Yet the answer was always right in front of us. It worries me that you and I might have the answer to important questions right within our grasp all along--but don't know it. What if the same were true, say, for cancer? That is, a profound answer is right there, but our eyes just pass right over it.

Anyway, we should all keep our eyes open and perhaps you and I will continue to identify the most powerful tools available that return control over heart disease to us and take it away from the perverse, procedural hospital formula that still reigns.

If you haven't done so already, be sure to visit Dr. Cannell's website, www.vitamindcouncil.com.



The Vitamin D Newsletter
March, 2007

Peak Athletic Performance and Vitamin D

"No way doc." I had just finished telling my patient about the benefits of vitamin D, telling him he should take 4,000 IU per day, using all the techniques I had learned in 30 years of medical practice to convince someone proper treatment is important. But, he knew the U.S. government said he only needed 200 IU per day, not 4,000. He also knew the official Upper Limit was 2,000 IU a day. "What are you trying to do doc, kill me?" I told him his 25(OH)-vitamin D blood test was low, only 13 ng/ml. He had read about that too, in a medical textbook, where it said normal levels are between 10 and 40 ng/ml. "I'm fine doc;" adding "Are you in the vitamin business?" I explained I was not; that the government used outdated values; that recent studies indicate ideal 25(OH)D levels are about 50 ng/ml; and that they indicated that he needed about 4,000 IU per day to get his level up to 50. "No thanks doc, I'm fine."

So I tried a different tact. I brought him copies of recent press articles. "Look," I said, "look at these." Science News called vitamin D the Antibiotic Vitamin. The Independent in England says vitamin D explains why people die from influenza in the winter, and not the summer. U.S. News and World Report says almost everyone needs more. Newsweek says it prevents cancer and helps fight infection. In four different recent reports, United Press International says that: it reduces falls in the elderly, many pregnant women are deficient , it reduces stress fractures, and that it helps heals wounds.

He glanced at the articles, showing a little interest in stress fractures. Then he told me what he was really thinking. "Look doc, all this stuff may be important to old guys like you. I'm 22. All I care about are girls and sports. When I get older, maybe I'll think about it. I'm too young to worry about it. I'm in great condition." I couldn't argue. He was in good health and a very good basketball player, playing several hours every day, always on indoor courts.

What could I do to open his eyes? As an African American, his risk of early death was very high, although the risk for blacks doesn't start to dramatically increase until their 40's and 50's. Like all young people, he saw himself as forever young. The U.S. government was no help, relying on a ten-year-old report from the Institute of Medicine that is full of misinformation.

I tired to tell him that the 200 IU per day the U.S. government recommends for 20-year-olds is to prevent bone disease, not to treat low vitamin D levels like his. I pointed out the U.S. government's official current Upper Limit of 2,000 IU/day is the same for a 300 pound adult as it is for a 25 pound toddler. That is, the government says it's safe for a one-year-old, 25-pound, child to take 2,000 IU per day but it's not safe for a 30-year old, 300-pound, adult to take 2,000 and one IU a day. I mean, whoever thought up these Upper Limits must have left their thinking caps at home. Nevertheless, nothing worked. My vitamin D deficient patient was not interested in taking any vitamin D.

What are young men interested in? I remembered that he had told me: "Sex and sports." Two years ago I had researched the medical literature looking for any evidence vitamin D enhanced sexual performance. Absolutely nothing. That would have been nice. Can you imagine the interest?

Then I remembered that several readers had written to ask me if vitamin D could possibly improve their athletic performance? They told me that after taking 2,000 to 5,000 IU per day for several months, they seemed just a little faster, a little stronger, maybe had a little better balance and timing. A pianist had written to tell me she even played a better piano, her fingers moved over the keys more effortlessly! Was vitamin D responsible for these subtle changes or was it a placebo effect? That is, did readers just think their athletic performance improved because they knew vitamin D was a steroid hormone precursor (hormone, from the Greek, meaning "to set in motion")?

The active form of vitamin D is a steroid (actually a seco-steroid) in the same way that testosterone is a steroid and vitamin D is a hormone in the same way that growth hormone is a hormone. Steroid hormones are substances made from cholesterol, which circulate in the body, and work at distant sites by "setting in motion" genetic protein transcription. That is, both vitamin D and testosterone regulate your genome, the stuff of life. While testosterone is a sex steroid hormone, vitamin D is a pleomorphic (multiple function) steroid hormone.

All of a sudden, it didn't seem so silly. Certainly steroids can improve athletic performance although they can be quite dangerous. In addition, few people are deficient in growth hormone or testosterone, so when athletes take sex steroids or growth hormone they are cheating, or doping. The case with vitamin D is quite different because natural vitamin D levels are about 50 ng/ml and, since almost no one has such levels, extra vitamin D is not doping, it's just good treatment. I decided to exhaustively research the medical literature on vitamin D and athletic performance. It took me over a year.

To my surprise, I discovered that there are five totally independent bodies of research that all converge on an inescapable conclusion: vitamin D will improve athletic performance in vitamin D deficient people (and that includes most people). Even more interesting is who published this literature, and when. Are you old enough to remember when the Germans and Russians won every Olympics in the 60's and 70's? Well, it turns out that the most convincing evidence that vitamin D improves athletic performance was published in old German and Russian medical literature.

With the help of my wife and mother-in-law, both of whom are Russian, and with the help of Marc Sorenson, whose book Solar Power is a must read, I finally was able to look at translations of much of the old Russian and German literature. When one combines that old literature with the modern English language literature on neuromuscular performance, the conclusion is inescapable. The readers who wrote me are right.

If you are vitamin D deficient, the medical literature indicates that the right amount of vitamin D will make you faster, stronger, improve your balance and timing, etc. How much it will improve your athletic ability depends on how deficient you are to begin with. How good an athlete you will be depends on your innate ability, training, and dedication. However, peak athletic performance also depends upon the neuromuscular cells in your body and brain having unfettered access to the steroid hormone, activated vitamin D. In addition, how much activated vitamin D is available to your brain, muscle, and nerves depends on having ideal levels of vitamin D in your blood - about 50 ng/ml, to be precise.

Why would I write about such a frivolous topic like peak athletic performance when cancer patients all across this land are dying vitamin D deficient? Like many vitamin D advocates, I have been disappointed that the medical profession and the public don't seem to care about vitamin D. Maybe people, like my young basketball player, will care if it makes better athletes. So, Hey! You jocks! Listen up! I'm talking speed, balance, choice reaction time, muscle mass, muscle strength, squats, reps, etc. Important stuff. Here's the Vitamin D Council's first ever sports quiz.


1. Vitamin D-producing UVB radiation improves athletic performance and may have been widely practiced by German and Russian Olympic athletes in the 1960's and 70's.


True. I found tantalizing evidence the Russians and especially the Germans were on to this during the 60's and 70's when those two nations took turns placing number one and number two in the Olympics every year?


For example, in 1938, Russian researchers reported that a course of ultraviolet irradiations improved speed in the 100-meter dash in college students compared to matched controls, both groups undergoing daily training. Average 100-meter dash times decreased from 13.51 seconds to 13.28 seconds in the non-irradiated controls, but from 13.63 seconds to 12.62 seconds in the irradiated students. Here we see training improved times but training and irradiation improved times much more. Obviously, irradiation or vitamin D would not render the same magnitude of improvements in world-class sprinters, but they would be happy with a few milliseconds.


Gorkin Z, Gorkin MJ, Teslenko NE. [The effect of ultraviolet irradiation upon training for 100m sprint.] The Journal of Physiology of the USSR [Fiziol, z. (RSSR)] 1938; 25: 695-701. (In Russian)



If you want to know what early German thinking was on this, read this summation of the German literature:

"It is a well-known fact that physical performance can be increased through ultra-violet irradiation. In 1927, a heated argument arose after the decision by the German Swimmers' Association to use the sunlamp as an artificial aid, constituting an athletic unfairness, doping, so to speak. In 1926, Rancken had already reported the improving effect of sunlamp irradiation on muscle work with the hand-dynamo-graph. Heib observed an improvement in swimming times after repeated irradiations. In thorough experiments, Backmund showed that a substantial increase in muscle activity happens after radiation of larger portions of the body with an artificial sunlamp; that this performance increase is not caused through local - direct or indirect - effects on the musculature, but through a general effect. This general effect, triggered by ultra-violet irradiation, is caused by a systemic effect on the nervous system." (p. 17)


Parade GW, Otto H. Die beeinflussung der leistungsfahigkeit durch Hohensonnenbestrahlung. Zeitschrift fur Klinische Medizin (Z Klin Med),1940;137:17-21 [In German]


In 1945, two Americans measured the cardiovascular fitness and muscular endurance of 11 male Illinois subjects undergoing training in an indoor physical education class, comparing them to 10 matched controls. Both groups underwent similar physical training. Treatment consisted of ultraviolet irradiation, given in the nude, up to two minutes per session, three times per week, for ten weeks in the late fall and winter. After ten weeks, the treatment group had a 19% standard score gain in cardiovascular fitness compare to a 2% improvement in the control students. To regular readers of this newsletter, it should come as no surprise that the un-irradiated control group reported twice as many viral respiratory infections as the treatment group.


Allen R, Cureton T. Effects of Ultraviolet Radiation on Physical Fitness. Arch Phys Med 1945: 10: 641-44.


In 1952, the German sports medicine researcher, Spellerberg, reported on the effects of wholesale irradiation of athletes studying and training at the Sports College of Cologne - including many elite athletes - with a "central sun lamp." He irradiated the athletes in their bathing suits, on both sides of their bodies, for up to ten minutes, twice a week, for 6 weeks. He reported a "convincing effect" on athletic performance and a 50% reduction in sports injuries. Results were particularly impressive for swimmers, soccer, handball, hockey, and tennis players, as well as for boxers and most track and field athletes. He reported that irradiation leading to burns, further irradiation of athletes having achieved peak performance, and irradiation within 24 hours of competition, all impaired athletic performance. Their results were so convincing, the Sports College of Cologne officially notified the "national German and International Olympic committee." (p. 570)


Spellerberg AE. [Increase of athletic effectiveness by systematic ultraviolet irradiation.] Strahlentherapie 1952; 88: 567-70. [In German]


In 1952, Ronge exposed 120 German schoolchildren to UV lights installed in classrooms and compared them to 120 un-irradiated control children. Over a two-year period - excluding summer vacations - he tested both groups with a series of six cardiovascular fitness tests using a bike ergometer. Un-irradiated children showed a distinct seasonality in fitness, with the highest values right after summer break and the lowest values in the spring. Treated children showed no seasonal differences in physical performance. Differences in work performance between the irradiated and un-irradiated children were most conspicuous in the spring with 56% difference between the two groups. In a final experiment, he gave 30 children in the control classrooms 6.25 mg (250,000 IU) of vitamin D as a single dose in February and found their performance had "increased considerably," one month later but did not report the actual numbers. He concluded that vitamin D, either as a supplement or induced via UV irradiation, improved physical performance.


Ronge HE. [Increase of physical effectiveness by systematic ultraviolet irradiation.] Strahlentherapie 1952; 88: 563-6. [In German]

In 1954, another researcher, at the Max-Planck Institute for Industrial Physiology in Dortmund, Germany, administered three different wavelengths of UV light over 8 weeks to university students. He found that ultraviolet light in the vitamin D-producing UVB range was consistently effective in reducing resting pulse, lowering the basal metabolic rate, and increasing athletic performance. UVA had no effect; interestingly, artificial UVC irradiation (the atmosphere normally completely filters out UVC radiation and thus it's not naturally present on earth) also gave some positive results.


Lehmann G. [Significance of certain wave lengths for increased efficacy of ultraviolet irradiation.] Strahlentherapie. 1954 Nov;95(3):447-53. [In German]


In 1956, Hettinger and Seidel irradiated seven subjects in two different experiments: athletic performance on bike-ergometers and forearm muscle strength. They found that UV radiation induced a significant improvement in both muscle strength and athletic performance.



Hettinger T, Seidl E. [Ultraviolet irradiation and trainability of musculature.] Internationale Zeitschrift für angewandte Physiologie, einschliesslich Arbeitsphysiologie 1956; 16: 177-83. [In German]


Another German researcher, at the Institute for Medical Physics and Biophysics at the University of Gottiingen, studied reaction times (the time needed to recognize a light and switch it off) during October and November in a series of controlled experiments on 16 children and an unspecified number of adults. He first controlled for practice effects (getting better by practicing) and then administered nine full-body UV radiation treatments over three weeks to the two treatment groups, using placebo radiation in the two control groups. UV radiation improved choice reaction time by 25% in children and 20% in adults while reaction time worsened in controls. The improvements in the irradiated groups peaked at the end of the three weeks of UV treatments and reverted to baseline levels three weeks later. In the two control groups, he found distinctly improved reaction times in the sunnier months.


Sigmund R. [Effect of ultraviolet rays on reaction time in man.] Strahlentherapie. 1956; 101: 623-9. [In German]


The next study threw me because it was very well conducted, meticulously designed, and completely negative. In 1963, Berven reported on the effects of ultraviolet irradiation and vitamin D supplementation in a group of 30 Stockholm schoolchildren, aged 10 -11, comparing them to appropriate controls. He found no seasonality of fitness in the control group and no effect from either irradiation or two different vitamin D supplementation protocols (1500 IU of cholecalciferol daily for two months and a single dose of 400,000 IU of ergocalciferol) on performance on a bike ergometer.


Berven H. The physical working capacity of healthy children; seasonal variations and effect of ultraviolet irradiation and vitamin-D supply. Acta paediatrica. Supplementum 1963; 148: 1-22.


However, two things were not right and got me thinking. One, Berven found no seasonality of physical fitness and was the only author who found no such seasonal variations in athletic performance. Second, he found no effect from irradiation, again, the only author. Then I realized he was working with Swedish children in the late 1950's. Supplementation of children with high doses of vitamin D - often as cod liver oil - was routine in Scandinavia in the past, particularly in children. For example, in neighboring Finland, the official recommended daily dose of vitamin D for children - including infants - was 4,000 IU per day until 1964, when authorities reduced it to 2,000 IU/day. (That's right, you read that correctly, 4,000 IU per day for infants, which is too much by the way.)



In 1975, Finnish authorities reduced it to 1,000 IU per day, and, in 1992, to 400 IU per day. I emailed Professor Elina Hypponen who confirmed that the Swedish recommendations were similar to the Finnish ones. Therefore, it seems highly unlikely that many of Berven's Swedish children, studied in 1958 and 1959, all from "families with a good standard of living," were vitamin D deficient. Therefore, this study showed that vitamin D will not improve athletic ability in vitamin D replete people. That's very important because it indicates more is not necessarily better. More is only better if you are not taking enough.

Hypponen E, et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001 Nov 3;358(9292):1500-3.

In the 1960's, three American researchers conducted experiments with university students. Rosentswieg studied the effects of a single six-minute dose of UV light on each side of the trunk in 23 college women, recording changes in various tests of muscle strength at one and five hours. He found a trend towards significance after five hours in white but not African American students. In 1968, Cheatum found that a six-minute administration of UV light, on each side of the trunk, increased the speed of 15 college women in the 30-yard dash. In 1969, Rosentswieg found a six-minute dose of UV light, on each side of the trunk, finding improved performance on a bicycle ergometer in college women. However, unlike the Germans and Russians, I could find no evidence that any of these American findings interested any American professionals involved in the care or training of athletes.


Rosentsweig J. The effect of a single suberythemic biodose of ultraviolet radiation upon the strength of college women. J Assoc Phys Ment Rehabil. 1967 Jul-Aug;21(4):131-3.

Cheatum BA. Effects of a single biodose of ultraviolet radiation upon the speed of college women. Res Q. 1968 Oct;39(3):482-5.

Rosentswieg J. The effect of a single suberythemic biodose of ultraviolet radiation upon the endurance of college women. J Sports Med Phys Fitness. 1969 Jun;9(2):104-6.


2. Athletic performance peaks in the summer when vitamin D levels peak, and is at its lowest in the winter when vitamin D levels are at their lowest.

A. True
B. False


True. The studies below - all I could find in the literature - show tests of physical performance peak in the summer, when vitamin D levels peak, start to decline in early autumn, as vitamin D levels decline, and athletic performance reaches its lowest point in late winter, when vitamin D levels bottom out. However, it is reasonable to assume that any associations between athletic performance and summer season may be due to "reverse causation." That is, improved athletic performance in the summer might be secondary to increased outdoor physical and recreational activity in the warmer weather with an indoor sedentary lifestyle during the colder months. Maybe people have better athletic ability in the summer because they exercise more. If that is true - and using the same logic - athletic performance should not begin to decline until late autumn, because at most temperate latitudes early fall weather is ideal for outdoor physical activities.


However, some of the studies below controlled for seasonal variations in time spent exercising. Furthermore, besides a consistent positive association of summer season with improved athletic performance, the below studies found an abrupt - and unexplained - reduction in athletic performance beginning in the early fall - when vitamin D levels decline - but when the weather is ideal for outdoor activities.


For example, in 1956, German researchers found a distinct seasonal variation in the trainability of musculature, studying wrist flexor strength in 21 German subjects undergoing daily training. They found highly significant seasonal differences with peak performance during the later part of the summer, nadirs in the winter, and an unexplained sharp autumn decline beginning in October.


Hettinger T, Muller EA. Seasonal course of trainability of musculature. Int Z Angew Physiol. 1956;16(2):90-4.

A study of Polish pilots and crew found physical fitness and tolerance to hypoxia were highest in the late summer with an unexplained sharp decline starting in September. The authors hypothesized that seasonal variations in an unidentified hormone best explained their results.


Kwarecki K, Golec L, Klossowski M, Zuzewicz K. Circannual rhythms of physical fitness and tolerance of hypoxic hypoxia. Acta Physiol Pol. 1981 Nov-Dec;32(6):629-36.


Cumulative work ability among 1,835 mainly sedentary Norwegian men during bicycle exercise tests showed an August peak, a sharp decline starting in the autumn, and a wintertime nadir. There were no seasonal changes in body weights, as might be expected if more caloric-demanding recreational activity during the sunnier months explained their results.


Erikssen J, Rodahl K. Seasonal variation in work performance and heart rate response to exercise. A study of 1,835 middle-aged men. Eur J Appl Physiol Occup Physiol. 1979 Oct;42(2):133-40.


Koch and Raschka reviewed the mostly German literature on the seasonality of physical performance, discussing studies indicating that muscle strength and stamina peak in the late summer. The authors then attempted to control for seasonal variations in the time spent exercising by instituting a controlled yearlong training regimen, beginning in December. The training regimen consisted of at least 20 push-ups per day and 2 or 3 long-distances races per week for the entire year. They found the both the number of push-ups and muscle strength peaked in late summer followed by a rapid decline in the fall, and a nadir in the winter, despite continued training. They concluded that seasonal variations in an unidentified hormone best explained their results. In addition, by now we all know that vitamin D is a seasonal hormone, and a steroid hormone precursor to boot.


Koch H, Raschka C. Circannual period of physical performance analysed by means of standard cosinor analysis: a case report. Rom J Physiol. 2000 Jan-Dec;37(1-4):51-8.

3. Vitamin D has direct muscle-building (anabolic) effects.


A. True
B. False

True, but only in vitamin D deficient subjects. Both animal and human studies have found that vitamin D directly affects muscle. That is, vitamin D increases muscle mass.



For example, Birge and Haddad found that vitamin D caused new protein synthesis in rat muscle.


Birge SJ, Haddad JG. 25-hydroxycholecalciferol stimulation of muscle metabolism. J Clin Invest. 1975 Nov;56(5):1100-7.


What about humans? In 1981, Young performed muscle biopsies on 12 severely vitamin D deficient patients before and after vitamin D treatment. They found type-II (fast-twitch) muscle fibers were small before treatment and significantly enlarged after treatment. Sorensen performed muscle biopsies on eleven older patients with osteoporosis before and after treatment with vitamin D. The percentage and area of fast twitch fibers increased significantly after treatment, despite the lack of any physical training.


Young A, Edwards R, Jones D, Brenton D. Quadriceps muscle strength and fibre size during treatment of osteomalacia. In: Stokes IAF (ed) Mechanical factors and the skeleton. 1981. pp 137-145.

Sorensen OH, Lund B, Saltin B, Lund B, Andersen RB, Hjorth L, Melsen F, Mosekilde L. Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clin Sci (Lond). 1979 Feb;56(2):157-61.


Sato reported that two years of treatment with 1,000 IU of vitamin D per day significantly increased muscle strength, doubled the mean diameter, and tripled the percentage of fast-twitch muscle fibers, in the functional limbs of 48 severely vitamin D deficient elderly stroke patients. The placebo control group suffered declines in muscle strength, and in the size and percentage of fast-twitch muscle fibers.


Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-Dose Vitamin D Prevents Muscular Atrophy and Reduces Falls and Hip Fractures in Women after Stroke: A Randomized Controlled Trial. Cerebrovasc Dis. 2005 Jul 27;20(3):187-192 [Epub ahead of print]

These studies clearly show that vitamin D when administered to vitamin D deficient people stimulates the growth and number of those muscle fibers critical to athletic ability, type-2, or "fast twitch," muscle fibers.

4. Many studies have found direct associations between physical performance and vitamin D levels. That is, the higher your vitamin D level, the better your athletic performance.

A. True
B. False

True. I found 13 positive studies of associations between vitamin D levels and various parameters of neuromuscular performance. However, they were all in old people. Of course, old people can be athletes too. Furthermore, age differences in physiology and pharmacology are quantitative, not qualitative. That is, what is true in old people will be true in young people, although the magnitude might be different. Higher vitamin D levels are associated with a wide variety of athletic performance but appear to have the strongest associations with balance, timing, and timed tests of physical performance.

The three largest studies had more than 7,000 elderly subjects. All found evidence of a vitamin D threshold of between 30 - 50 ng/ml, above which further improvements in athletic performance were not seen. Wicherts and her colleagues found a linear correlation between vitamin D and neuromuscular performance; scores were 78% better for those with vitamin D levels greater than 30 ng/ml compared to those with levels less than10 ng/ml.


Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, Dawson-Hughes B. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or =60 y. Am J Clin Nutr. 2004 Sep;80(3):752-8.

Gerdhem P, Ringsberg KA, Obrant KJ, Akesson K. Association between 25-hydroxy vitamin D levels, physical activity, muscle strength and fractures in the prospective population-based OPRA Study of Elderly Women. Osteoporos Int. 2005 Nov;16(11):1425-31.


Wicherts IS, et al. Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab. 2007 Mar 6; [Epub ahead of print]

Professor Heike Bischoff-Ferrari, now in Switzerland, did the largest study. She and her colleagues found a strong positive correlation and suggestion of a U-shaped curve with athletic performance on one test peaking with vitamin D levels of 50 ng/ml but deteriorating at higher levels. It is interesting to speculate that levels around 50 ng/ml may be optimal for athletic performance as such levels are common in humans living in a "natural" state of sun-exposure, such as lifeguards or tropical farmers.


Bischoff HA, Stahelin HB, Urscheler N, Ehrsam R, Vonthein R, Perrig-Chiello P, Tyndall A, Theiler R. Muscle strength in the elderly: its relation to vitamin D metabolites. Arch Phys Med Rehabil. 1999 Jan;80(1):54-8.


Interestingly, all three studies that looked for an association between mental abilities and vitamin D levels found one. A fourth study, unrelated to athletic function, also found an association. The obvious explanation for these findings is that cognitively impaired patients do not go outdoors as often as higher functioning patients and thus have lower vitamin D levels. However, Dhesi found the association after excluding all but mildly demented patients, making such an explanation more difficult. Flicker and - more recently - Przybelski and Binkley, found the association after controlling for outdoor activities, raising the possibility that the association of vitamin D levels with cognitive abilities is casual. Both the vitamin D receptor and the enzyme necessary to activate vitamin D are present in a wide-variety of human brain tissue. If vitamin D deficiency impairs cognitive abilities, it is likely that such deficiencies will also impair the brain's ability to process the complex circuits needed for peak athletic performance.


Dhesi JK, Bearne LM, Moniz C, Hurley MV, Jackson SH, Swift CG, Allain TJ. Neuromuscular and psychomotor function in elderly subjects who fall and the relationship with vitamin D status. J Bone Miner Res. 2002 May;17(5):891-7.

Kenny AM, Biskup B, Robbins B, Marcella G, Burleson JA. Effects of vitamin D supplementation on strength, physical function, and health perception in older, community-dwelling men. J Am Geriatr Soc. 2003 Dec;51(12):1762-7.

Flicker L, Mead K, MacInnis RJ, Nowson C, Scherer S, Stein MS, Thomasx J, Hopper JL, Wark JD. Serum vitamin D and falls in older women in residential care in Australia. J Am Geriatr Soc. 2003 Nov;51(11):1533-8.

Przybelski RJ, Binkley NC. Is vitamin D important for preserving cognition? A positive correlation of serum 25-hydroxyvitamin D concentration with cognitive function. Arch Biochem Biophys. 2007 Jan 8;

There can be no doubt that higher vitamin D levels are associated with improved athletic performance in the elderly. From what we know of physiology and pharmacology, the same associations should hold true in young people, including young athletes.

5. Numerous studies have found that vitamin D improves physical performance.

A. True
B. False.

True, but, again, most all the studies are in old persons, not young ones, and none of the studies are in world-class athletes. However, there is no medical reason why vitamin D would improve the athletic performance of vitamin D deficient old people but not vitamin D deficient young ones. Eleven studies found vitamin D improved physical performance, mainly on measures of balance and reaction time. The one study of younger subjects showed dramatic physical performance effects in 55 severely vitamin D deficient women.


Sorensen OH, Lund B, Saltin B, Lund B, Andersen RB, Hjorth L, Melsen F, Mosekilde L. Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clin Sci (Lond). 1979 Feb;56(2):157-61.

Gloth FM 3rd, Smith CE, Hollis BW, Tobin JD. Functional improvement with vitamin D replenishment in a cohort of frail, vitamin D-deficient older people. J Am Geriatr Soc. 1995 Nov;43(11):1269-71.

Glerup H, Mikkelsen K, Poulsen L, Hass E, Overbeck S, Andersen H, Charles P, Eriksen EF. Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif Tissue Int. 2000 Jun;66(6):419-24.

Prabhala A, Garg R, Dandona P. Severe myopathy associated with vitamin D deficiency in western New York. Arch Intern Med. 2000 Apr 24;160(8):1199-203.

Verhaar HJ, Samson MM, Jansen PA, de Vreede PL, Manten JW, Duursma SA. Muscle strength, functional mobility and vitamin D in older women. Aging (Milano). 2000 Dec;12(6):455-60.

Pfeifer M, Begerow B, Minne HW, Abrams C, Nachtigall D, Hansen C. Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women. J Bone Miner Res. 2000 Jun;15(6):1113-8.

Bischoff HA, Stahelin HB, Dick W, Akos R, Knecht M, Salis C, Nebiker M, Theiler R, Pfeifer M, Begerow B, Lew RA, Conzelmann M. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res. 2003 Feb;18(2):343-51.

Dhesi JK, Jackson SH, Bearne LM, Moniz C, Hurley MV, Swift CG, Allain TJ. Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing. 2004 Nov;33(6):589-95.

Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-Dose Vitamin D Prevents Muscular Atrophy and Reduces Falls and Hip Fractures in Women after Stroke: A Randomized Controlled Trial. Cerebrovasc Dis. 2005 Jul 27;20(3):187-192 [Epub ahead of print]



In summary, five converging - but totally separate - lines of scientific evidence leave little doubt that vitamin D improves athletic performance. (I actually left out a sixth line of evidence, something a little more complicated, studies of muscle strength and vitamin D receptor polymorphisms; the two studies I could find were both positive.) Anyway, the scientific evidence that UVB radiation, either from the sun or from sunbeds, will improve athletic performance is overwhelming and the mechanism is almost certainly vitamin D production. Peak athletic performance will probably occur with 25(OH)D levels of about 50 ng/ml, whether from sun, sunbeds, or supplements.


All that is missing is a big-time professional or college team identifying and then treating their elite athletes who are vitamin D deficient. Can you imagine what such performance-enhancing effects would do for basketball players, most of who are African American and who practice and play indoors all winter? Or gymnasts? Or weight lifters?


However, a word of caution. The above studies suggest that taking too much vitamin D (more than 5,000 IU per day) may actually worsen athletic performance. Take the right amount, not all you can swallow. Take enough to keep your 25(OH)D levels around 50 ng/ml, year round. Easier yet, regularly use the sun in the summer and sunbeds in the winter - with care not to burn. Once a week should be about right.


When you think about it, none of this should surprise anyone. Every body builder knows that steroid hormones can improve athletic performance, certainly increase muscle mass. Barry Bonds knows they increase timing and power. Moreover, activated vitamin D is as potent a steroid hormone as exists in the human body. However, unlike other steroids, levels of activated vitamin D in muscle and nerve tissue are primarily regulated by sun exposure. That's right, the rate-limiting step for the cellular function (autocrine) of activated vitamin D is under your control. It depends on how much you put in your both or go into the sun. It's ironic that many athletes now avoid the sun, organized baseball is even promoting sun avoidance and sunblocks. The ancient Greeks knew better; they had there elite athletes train on the beach and in the nude.



The medical literature indicates vitamin D levels of about 50 ng/ml are associated with peak athletic performance. Of course, recent studies show such levels are ideal for preventing cancer, diabetes, hypertension, influenza, multiple sclerosis, major depression, cognitive impairments, etc. But who cares about all that disease stuff old people get, we're talking about something really important: speed, balance, reaction time, muscle mass, muscle strength, squats, reps, etc. And guess who's now taking 4,000 IU/day? Yes he is, and he tells me his timing is better, he can jump a little higher, run a little faster, and the ball feels "sweeter," whatever that means.

John Cannell, MD

This is a periodic newsletter from the Vitamin D Council, a non-profit trying to end the epidemic of vitamin D deficiency. If you don't want to get the newsletter, please hit reply and let us know. We don't copyright this newsletter. Please feel free to reproduce it and post it on Internet sites and blogs. Remember, we are a non-profit educational organization. Our pathetic finances are available for public inspection. We rely on donations to publish our newsletter and maintain our website. Send your tax-deductible contributions to:


The Vitamin D Council (www.vitamindcouncil.com)
9100 San Gregorio Road
Atascadero, CA 93422

Watch your groin

The reason why I've been blogging lightly these past few days is because, as a favor, I'm covering the practice for some colleagues who I'm (very) loosely affiliated with. The time demands have been great.

Nonetheless, it is a good reminder to me just how far wrong conventional cardiology remains. Judging by what I see around me, there is a startling lack of restraint in proceeding to the catheterization laboratory. Curiously, the internists and family practitioners have been brainwashed into accepting this path. I suppose that all it takes is an occasional real "save" for these physicians to develop a fear of ever missing real disease.

What I'm seeing is just how many people presenting with chest pain or similar symptoms end up going to the cath lab. I would crudely estimate 80%. That is, once you make it past the emergency room, there's a four out of five chance that you'll end up with a heart catheterization to "be sure your heart is okay", "make certain you're not going to die of heart disease", "see if there's a ticking time bomb in your chest". You've heard all the clever, scary phrases that get tossed around to scare the pants off you and justify putting catheters in your groin.

Despite the fact that tools for heart disease prevention have improved dramatically, the volume of heart catheterizations continues to grow nationwide.

I find it shocking and unacceptable. We're currently working behind the scenes to help change this situation through education of the public. Persuade a $1 million a year cardiologist that he is overdoing procedures? Unlikely in my experience. Educate the public about the shocking over-reliance on high-revenue procedures? Perhaps more practical.

Garlic and cholesterol--Does everyone now need Lipitor?

Garlic May Not Lower Cholesterol
Study Shows No Improvement in Cholesterol Levels From Raw Garlic or Garlic Supplements

Lots of reports continue to hit the press about a small study that hoped to determine whether garlic as whole cloves (4 to 6), an aqueous extract of garlic called Kyolic, or an oil extract called Garlicin (high in allicin), or placebo. No differences in lipid numbers including LDL cholesterol were observed.

(Full text at WebMD at http://www.webmd.com/cholesterol-management/news/20070226/garlic-may-not-lower-cholesterol?ecd=wnl_chl_030507. You may be required to log in or register.)

I believe that the researchers were sincere in their effort to follow an honest, scientfically sound clinical trial design. I'm personally not that surprised. The effect in prior studies has been modest, sometimes none. Does that mean that we should ignore the other studies that suggest there may be modest blood-thinning, anti-inflammatory, blood pressure-reducing, and cancer-preventing properties? No, it does not. Dr. Matt Budoff at UCLA even published a very small study in about 20 people that suggested a slowing of plaque growth by using Kyolic in persons tracked by CT heart scans.

Nonetheless, garlic is, at best, probably no more than a source of small benefits. The biggest fallout from this kind of report, however, is not the neutral results from garlic, but from the open door the drug companies sense when this happens.

If you read the WebMD report, you'll notice all sorts of advertisements from drug companies for statin cholesterol drugs ("Cholesterol health center"; "Understanding Cholesterol Numbers"; "There are two sources of cholesterol: food and family"), Niaspan (which I used to support but have been discouraged by the Kos companies excessively profiteering methods and recent big Wall Street sellout).

It doesn't follow. The failure of one nutritional strategy to reduce LDL does nothave to trigger a run to the drugs. Don't fall for it. Drugs have their place. So do supplements and food choices, which can be very powerful. Drug manufacturers and their marketing people salivate when something like this comes along, an open invitation to say, "If garlic doesn't work, _____ sure does."

Diet Coke saves father's life

Jason came to the office because of chest pain. At 34 years old, he works as manager of a (non-fast food) restaurant, but indulges in lots of the odds and ends. Among his indulgences: Diet Coke. Every time he'd have a diet Coke, he'd have chest pain. Not drinking diet Coke--no chest pain. If Jason drank coffee, no chest pain. Other foods, no chest pain. Anyway, just eliminating the diet Coke seemed to do the trick. (Aspartame?)

Anyway, that's not why I tell you Jason's story. In the midst of his evaluation, an echocardiogram showed a mildly enlarged aorta, measuring 4.0 cm in diameter. So we obtained lipoproteins. Jason showed lipoprotein(a) and small LDL particles, the dreaded duo. We talked about how to correct this pattern. Among the strategies we discussed was niacin.

But what bothered me was that neither of Jason's parents had a diagnosis of heart disease. Jason had to have gotten Lp(a) from either his mother or father, since you obtain the gene from one or the other parent. You cannot acquire Lp(a). So one of Jason's parents was sitting on a genetic time bomb of unrecognized Lp(a) and hidden heart disease.

Because Jason's paternal grandfather had a heart attack at age 62, only Jason's Dad had the heart scan (though I urged both to get one). Score: 1483. Recall that heart scan scores >1000 carry a risk of death or heart attack of 25% per year if no preventive action is taken. Now, of course, we have to persuade Jason's Dad that a program of prevention--intensive prevention is in order, including a measure of Lp(a).

So that's the curious story of how Diet Coke probably saved Jason's Dad's life. The lesson is that if you or someone you know has Lp(a), think about their children as well as their parents, each of whom carry a 50% chance of having the pattern.
De Novo Lipo-what?

De Novo Lipo-what?

Humans have limited capacity to store carbohydrates. Beyond the glucose and glycogen in our blood and tissues, we have relatively little carbohydrate to draw from in time of energy need. That's why long-distance runners and triathletes have to carry sugar sources to keep blood sugar from plummeting.

Fat, of course, is different. We have virtually unlimited capacity to store energy as fat.

Because we have limited carbohydrate storage capacity, what can the body do with the excessive quantities of carbohydrates that Americans ingest? What becomes of a bagel for breakfast, wheat crackers for snacks, a whole wheat sandwich for lunch, pretzels, and whole wheat pasta that many people eat every day, not to mention the chips, soft drinks, and juices?

Excess carbohydrates are diverted to an interesting metabolic pathway called de novo lipogenesis (DNL). This refers to the liver's ability to make triglycerides from excessive carbohydrates in the diet. Triglycerides are packaged for release into the blood as VLDL. VLDL, in turn, interacts with other lipoproteins, creating small LDL particles, reduced HDL and smaller, less protective HDL. High VLDL will be measured on a standard cholesterol panel as higher triglycerides.

A University of California (Berkeley, San Francisco) group has done much of the work describing DNL.

A diet weighed towards carbohydrates, especially if 50% or greater calories are carbohydrate, is sufficient to provoke plenty of DNL, even in slender people. DNL is a big part of the reason why low-fat (and, thereby, high-carbohydrate) diets result in higher triglycerides. DNL really gets turned on many-fold if the carbohydrates are "simple," rather than "complex."

Overweight people, however, can demonstrate five-fold greater DNL even with lesser quantities of carbohydrate intake (e.g., 40% fat, 46% carbohydrate, 14% protein):





From Schwarz et al 2003. Mean (± SEM) fractional de novo lipogenesis in lean normoinsulinemic (NI), obese NI, and obese hyperinsulinemic (HI) subjects after 5 d of consuming a high-fat, low-carbohydrate diet and in different lean NI and obese HI subjects after 5 d of consuming a low-fat, high-carbohydrate diet. Values with different superscript letters are significantly different.


Excessive carbohydrates, a la standard low-fat diets, are good for nobody. The concept of de novo lipogenesis fills in a theoretical hole that now explains why people who eat carbohydrates have higher triglycerides, VLDL, and, eventually, insulin resistance and diabetes.

Comments (16) -

  • Dave

    1/5/2010 5:11:24 PM |

    Just how do higher VLDL and higher triglycerides promote insulin resistance?

  • Anonymous

    1/5/2010 6:03:32 PM |

    Dr. Davis, I've just recently stumbled upon this blog and I love it.  Thank you for so generously sharing your insights.

    I was wondering if would suggest any different dietary guidelines for people with familial hypercholesterolemia.  In particular, I have heterozygous FH for which I am taking 40mg Crestor, but I am an otherwise healthy, lean 25 year old male with lipid numbers of 47 Trig / 169 LDL (calculated)/ 73 HDL.  I closely follow a paleo/primal diet and fitness routine so I am hoping the LDL is the large and in little danger of oxidation.

    To any other FHers out there, I would be happy to hear about your experiences.

    Thanks!

  • Anonymous

    1/5/2010 9:54:50 PM |

    46% carbs is still high in my opinion. I tend to agree with Dr. Eades in the book Protein Power where your carb requirements should not exceed 1.3 times your protein requirements and that should be based on lean body mass and activity level. The rest fat, mostly saturated animal fat. Tropical oils are great too.

  • Anonymous

    1/5/2010 10:45:04 PM |

    Does this chart, which shows that HI people have much higher DNL on a low-carb diet, explain Gretchen's result in your previous article?  She is HI (hyperinsulinemic), right?

    So people on a low-carb/high-fat diet who have normal levels of insulin will not experience the post-prandial spike in triglycerides that Gretchen did.

  • Anonymous

    1/6/2010 1:56:22 PM |

    DNL really gets turned on many-fold if the triglycerides are "simple," rather than "complex."

    Could you please explain the difference between 'simple' and 'complex' triglycerides.

    Thanks!

  • LynneC

    1/6/2010 7:27:38 PM |

    Anonymous re familial Hz hypercholesterolemia.  I, too, am Hz and started with the Track your Plaque (Dr Davis') program about 4 months ago. I think that you have stumbled upon the best diet for this condition. (paleo/ low-carb) I am trying to find that balance of the least amount of Crestor that I can take vs how much sat fat I can add to my diet while keeping my LDL in line.
    I was on a weekly total of 80 mg Crestor, and my LDL-c was 170 as of 2 weeks ago. My LDL particle count is still too high, so I have just started to add another 20mg dose per week.  I take it every other day, so my new weekly total of Crestor will be 100mg.

    You should consider joing the Track your Plaque program that is run by Dr Davis.  There many great discussions there and some very sharp minds that contribute to the discussion forum.

    At the very least, get an NMR lipid profile done; this will let you know the most important aspect of your LDL, which is the number of particles that comprise it.

  • Dr. William Davis

    1/7/2010 3:27:39 AM |

    A point of clarification: Fat intake leads to high postprandial triglycerides--there is absolutely no doubt about this. This occurs regardless of insulin sensitivity, body weight, carbohydrate content of the meal, etc.

    Fat = triglycerides. When you eat fat, triglycerides go up postprandially.

  • Dr. William Davis

    1/7/2010 3:29:18 AM |

    Anon--

    Simple carbohydrates = simple sugars like candy, soft drinks, juices: immediately absorbed, no fiber

    Complex carbohydrates = carbohydrates that occur in polymers or bound up in fibers, less rapidly absorbed.

    In my mind, both are undesirable, though complex are less undesirable.

  • Dave

    1/7/2010 5:43:55 AM |

    Dr. Davis, surely you don't mean *all* complex carbohydrates are undesirable, do you?  Carbohydrates from, say, sweet potatoes and oat bran must be (more than) just fine, on balance.  And as to fat, might the solution be to increase good fat (mono and omega-3) but avoid saturated and trans fat?

  • Dr.A

    1/7/2010 12:14:22 PM |

    Great post! I have just completed a university nutrition course... knowing that carbs turn to fat easily I was stunned to find the following in my course text:
    The amount of glycogen that can be stored is quite limited(no more than a few hundred grams in total), so the stores are filled quite quickly and if more glucose is available, then the excess could be converted into fat for storage. Fat stores in the body are effectively unlimited. However, it appears that excess carbohydrate is normally used for energy rather than being converted to fat.

  • Ryan Koch @ Health Matters to Me

    1/9/2010 6:42:36 PM |

    Dr. Davis,

    Aren't the results of the study questionable due to the fact that the participants' diet was prepared in a laboratory and may have consisted of health-altering foods (i.e. gluten, artificial fructose, trans fats, veggie oils)?  Do they list the diet composition in the study?  I may have missed it.

    Also, regarding runners and their fuel sources: I've read that Ethiopian runners don't hit "the wall" like runners in more modern cultures do.  This means they have an efficient fat-burning metabolism, correct?  Their diet composition is mostly starchy non-gluten carbs:

    "Diet was high in carbohydrate (76.5%, 0.4 g/kg BM per day) and low in fat (13.4 %)."
    Food and macronutrient intake of elite kenyan distance runners

    Interesting?

  • Anonymous

    3/29/2010 9:49:16 AM |

    "However, it appears that excess carbohydrate is normally used for energy rather than being converted to fat."

    That's true. The biggest impact of carbs is that they are used for energy first, which means more of the fat consumed can be stored. This has been proven with radioactive studies that show that most of the fat in your body comes from fat in food, not from carbs. Of course, if you consume enough carbs, then those too will be converted to fat. Also, whether carbs directly become fat or not, the outcome is the same: more fat is stored in presence of more carbs.

  • MachineGhost

    5/25/2010 5:44:55 AM |

    Much of the confusion here seems to be the unawareness that different saturated fat subtypes have different post-prandial effects.  This was demonstrated by Hegsted eons ago and formulated into an equation.  Google it.

    Clearly, the predominant subtype of saturated fat in fatty meats is HARMFUL.  A HEALTHY high fat, low carbohydrate diet is EQUALLY BALANCED among the three fat macrotypes, not EXTREME to saturated fat.  Typically, studies just use the Atkins version of extreme high satirated fat, low carb.  A recent study showed that eating 1-2 slices of processed lunchmeat or 1 hot dog a day increases heart disease risk by 40% and diabetes by 20%, and that's on top of the increased risk of cancer from the nitrates.

    As far the high carb, low fat diet (S.A.D.), the culprit is the lack of soluble fiber which slows down post-prandial absorption.  The best at ameliorating this role is glucomannan.

    But people, don't kid yourself.  There are SEVENTEEN independent risk factors for heart disease.  You have to circumvent ALL of them to completely eliminate the risk.  A low, unrefined carb diet (<25% calories) with the remaining calories from balanced, unrefined fats and lean protein is a big part, but the rest involves influencing biochemistry and genetic expression via supplementation.

  • buy jeans

    11/3/2010 2:31:42 PM |

    A diet weighed towards carbohydrates, especially if 50% or greater calories are carbohydrate, is sufficient to provoke plenty of DNL, even in slender people. DNL is a big part of the reason why low-fat (and, thereby, high-carbohydrate) diets result in higher triglycerides. DNL really gets turned on many-fold if the triglycerides are "simple," rather than "complex.

  • ron

    1/1/2012 9:02:20 PM |

    Eat your complex carbs, and take a vegan algae-derived DHA/EPA supplement. Your triglycerides, if they're high, will drop like a stone. The healthiest, longest-lived, large populations on the planet eat starch-based diets.

  • Kirk

    1/4/2012 10:40:50 PM |

    If the problem with carbs is DNL, this implies that an amount up to where DNL is triggered is safe.  So I see why you recommend no more than 15 net carbs per meal.  Would this amount change for a (natural) body builder?  For example, i do 30 min strength training with weights at double my body weight.  I would like to replenish my muscles to prevent glycogen depletion.  Do you think it would be safe to increase the amount of carbs consumed in the post work out meal to 30 or 50g of complex carbs?

Loading