Thumb your nose at swine flu

Judging from what we know about vitamin D, it is highly probable that it confers substantial protection from viral infections, including swine flu.

Dr. John Cannell of the Vitamin D Council (www.vitamindcouncil.com) first connected the dots, identifying the possibility of an influence of vitamin D on incidence of flu.

In 2006, Dr. Cannell reports noticing that the patients in his psychiatric ward in northern California were completely spared from the influenza epidemic of that year, while plenty of patients in adjacent wards were coming down with flu. Dr. Cannell proposed that the apparent immunity to flu in his patients may have been due to the modest dose of 2000 units vitamin D per day he had prescribed that the patients in other wards had not been given. (Since the hospital was run by the state of California, Dr. Cannell apparently had only so much leeway with vitamin D dosing.) While it’s not proof, it’s nonetheless a fascinating and compelling observation.

A similar conclusion was reached in a recent analysis of the National Health and Nutrition Examination Survey demonstrating that the higher the vitamin D blood level, the less likely respiratory infections were.

Personally, I used to suffer through 2 or 3 episodes of a runny nose, sore throat, hacking cough, fevers and feeling crumby every winter. Over the last 3 years since I’ve supplemented vitamin D, I haven’t been sick even once. The past two years I didn’t bother with the flu vaccine, since I suspected that my immunity had been heightened: no flu either winter.

And so it has been with the majority of my patients. Since I began having patients supplement vitamin D to achieve normal blood levels (we aim for 60-70 ng/ml), viral and bacterial infections have become rare.

New research is uncovering myriad new ways that vitamin D enhances natural immune responses to numerous infections, including tuberculosis, bacteria such as those causing periodontal disease and lung infections, and viruses like the influenza virus. Enhanced immunity against cancer is also an intensive area of research on vitamin D.

Will vitamin D supplementation sufficient to achieve desirable blood levels confer sufficient immunity to swine flu should it come to your door? From what we know and what we’ve seen in the few years of vitamin D experience, I think it will in the majority. But I do believe that we should still heed public health warnings to avoid contact with others, minimize exposure to crowds, avoid travel to affected areas, etc.

Will the real LDL please stand up?

The results of the latest Heart Scan Blog poll are in.

The question: How has your LDL been measured? The 187 responses broke down as:


I have only had a conventional calculated value
108 (57%)

NMR LDL particle number
35 (18%)

Apoprotein B
21 (11%)

Direct LDL cholesterol
21 (11%)

Non-HDL cholesterol
8 (4%)

I don't know what you're talking about
23 (12%)


Remember the TV game show, To Tell the Truth? Celebrities would have to guess which of three guests represented the real person, such as the notorious con man, Frank Abagnale, Jr., or Mad Magazine publisher, William M. Gaines (who stumped celebrity Kitty Carlisle, heard to exclaim, "I never figured it was him. I mean look at the way he's dressed. I was looking for someone who ran a very successful magazine, so I thought it couldn't be him!")

The celebrities playing the game were permitted to ask the three guests a series of questions, hoping to discern who was the real person vs. the two impostors. At the end, each celebrity had to guess who was truly the person of interest. "Will the real Frank Abagnale, Jr. please stand up!"

If we were to act as the celebrities in our LDL game, we quickly discover some telling facts:

--Conventional LDL cholesterol (the only value 57% of our poll respondents have had) is calculated, not measured. LDL is calculated using the 40-year old Friedewald calculation.

--Directly measured LDL cholesterol (the value 11% of respondents had) is just that: directly measured. It eliminates some of the uncertainties of calculated LDL.

--Apoprotein B-Every LDL and VLDL particle produced by the liver contains one apoprotein B molecule. ApoB therefore provides a crude particle count measure of LDL and VLDL particles. Of course, it includes VLDL and is not completely the same as just an LDL measure. Some lipid authorities Like Dr. Peter Kwiterovich have advocated that apoB replace calculated LDL, and that calculated LDL essentially be discarded.

--Non-HDL cholesterol--I mention this more for completeness. Hardly anybody uses this crude value in practice--Indeed, only 4% of our poll respondents had this measure/calculation. Non-HDL is simply total cholesterol minus HDL cholesterol = Non-HDL cholesterol. It is thus a combination of cholesterol in LDL and VLDL (triglycerides), similar to apoprotein B. While, like apoB, it is a bit different in that it includes VLDL, it has proven a superior measure of risk.

--LDL particle number--In my view, this is the gold standard for LDL and risk measurement, obtained by only 18% of our poll respondents. LDL particle number is proving superior for discriminating who is truly at risk for a cardiovascular event, particularly when metabolic syndrome or diabetes is part of the picture, i.e., when HDL and triglycerides are considerably distorted, leading to substantial corruption of calculated LDL.


While 18% is a minority, it still represents growth in recognition that conventional calculated LDL cholesterol is an unreliable, inaccurate, and outdated value. If the real LDL were to stand up, I believe that it is LDL particle number that would spring to its feet.

Vitamin D and inflammation

We already know that vitamin D reduces inflammatory processes, since several markers, including c-reactive protein and IL-6 have previously been shown to drop substantially with vitamin D. Inflammation underlies coronary atherosclerotic plaque growth, as well as plaque rupture that triggers heart attack.

A German group has now shown that the important inflammatory marker, tumor necrosis factor (TNF), is also reduced by vitamin D supplementation. Many studies have implicated increased TNF levels in promoting cancer.

In this study, a modest vitamin D dose of 3320 units (83 micrograms) was given vs. placebo. The 25-hydroxy D level reached in the treated group was 34.2 ng/ml (85.5 nmol/L), which resulted in a 26.5% reduction in TNF compared with 18.7% reduction (?) in the placebo group.


Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers.

Zitterman A, Frisch S et al.

BACKGROUND: High blood concentrations of parathyroid hormone and low concentrations of the vitamin D metabolites 25-hydroxyvitamin D [25(OH)D] and calcitriol are considered new cardiovascular disease risk markers. However, there is also evidence that calcitriol increases lipogenesis and decreases lipolysis.
OBJECTIVE: We investigated the effect of vitamin D on weight loss and traditional and nontraditional cardiovascular disease risk markers in overweight subjects.
DESIGN: Healthy overweight subjects (n = 200) with mean 25(OH)D concentrations of 30 nmol/L (12 ng/mL) received vitamin D (83 microg/d) or placebo in a double-blind manner for 12 mo while participating in a weight-reduction program.
RESULTS: Weight loss was not affected significantly by vitamin D supplementation (-5.7 +/- 5.8 kg) or placebo (-6.4 +/- 5.6 kg). However, mean 25(OH)D and calcitriol concentrations increased by 55.5 nmol/L and 40.0 pmol/L, respectively, in the vitamin D group but by only 11.8 nmol/L and 9.3 pmol/L, respectively, in the placebo group.


(Calcitriol = 1,25-dihydroxy vitamin D.)


Knowing your vitamin D blood level is crucial, as individual need for vitamin D varies widely from one person to the next. You can get your vitamin D tested at home by going to Grassroots Health or the Track Your Plaque Marketplace.

Even monkeys do it


It all started back in the 1960s, when ape-watching anthropologists, Drs. Jane Goodall and Richard Wrangham, observed chimps foraging for a specific variety of leaf, which they consumed whole while wrinkling their noses in presumed disgust. Subsequent study showed that the leaves contained a powerful anti-parasitic compound.

A similar observation followed in 1987 by Dr. Michael Huffman from the University of Kyoto. During his year of living in the jungles of Tanzania, he observed chimpanzees in their native habitat. On one unexpected morning, he observed a female chimp, Chausiku:

Chausiku goes directly to and sits down in front of a shrub and pulls down several new growth branches about the diameter of my little finger. She places them all on her lap and removes the bark and leaves of the first branch to expose the succulent inner pith. She then bites off small portions and chews on each for several seconds at a time. By doing this, she makes a conspicuous sucking sound as she extracts and swallows the juice, spitting out most of the remaining fiber. This continues for 17 minutes, with short breaks as she consumes the pith of each branch in the same manner.”

Dr. Michael Huffman’s description of Chausiku documents a fascinating example of animal self-medication what some call "zoopharmacognosy."
In this instance, the chimpanzee, weak, clutching her back in pain, and listless, was ingesting the leaves of the plant, Vernonia amygdalina, to purge an intestinal parasite. She recovered by the next morning.

Vernonia leaves have since been found to contain over a dozen potential anti-parasitic compounds. Chimps in this region commonly suffer infestations of parasites like Strongyloides fuelleborni (thread worm), Trichuris trichiura (whip worm), and Oesophagostomum stephanostomum (nodular worm). They have somehow stumbled onto a treatment that they administer themselves.

Chimpanzees have inhabited earth for over 6 million years. Who knows how long they and other primates have practiced some form of self-medication.

If chimpanzees can do it, I believe that we, as human primates, can also practice a similar form of self-directed health--homopharmacognosy?



Image courtesy Wikipedia

Cath lab energy costs

In honor of Earth Day, I thought I'd highlight the unexpectedly high carbon costs of activities in hospitals, specifically the cardiac catheterization laboratory.

A patient enters the cath lab. The groin is shaved using a plastic disposable razor, the site cleaned with a plastic sponge, then the site draped with an 8 ft by 5 ft composite paper and plastic material (to replace the old-fashioned, reusable cloth drapes). A multitude of plastic supplies are loaded onto the utility table, including plastic sheaths to insert into the femoral artery (which comes equipped with a plastic inner cannula and plastic stopcock), a multi-stopcock manifold that allows selective entry or removal of fluids through the sheath, a plastic syringe to inject x-ray dye, plastic tubing to connect all the devices (total of about 5 feet), and multiple plastic catheters (3 for a standard diagnostic catheterization, more if unusual arterial anatomy is encountered).

All these various pieces come packed in elaborate plastic (polyethylene terephthalate or other polymers) containers, which also come encased in cardboard packaging.

Should angioplasty, stenting, or similar procedure be undertaken, then more catheters are required, such as the plastic "guide" catheters that contain a larger internal lumen to allow passage of angioplasty equipment. An additional quantity of tubing is added to the manifold and stopcock apparatus, as well as a plastic Tuohy-Borst valve to permit rapid entry and exit of various devices into the sheath.

Several new packages of cardboard and plastic are opened which contain the angioplasty balloon, packaging which is usually about 4 feet in length. The stent likewise comes packaged in an 18-inch or so long package with its own elaborate cardboard and plastic housing.

At the conclusion of the procedure, another cardboard/plastic package is opened, this one containing the closure device consisting of several pieces of plastic tubes and tabs.

If the procedure is complicated, the number of catheters and devices used can quickly multiply several-fold.

By the conclusion of the procedure, there are usually two large, industrial-sized trash bins packed full of cardboard, plastic packaging, and discarded tubing and catheters. The trash is so plentiful that it is emptied following each and every procedure. None of it is recycled, given the contamination with human body fluids.

That's just one procedure. The amount of trash generated by these procedures is staggering, much of it plastic. I don't know how much of the U.S.'s annual plastic trash burden of 62 billion pounds (source: EPA) originates from the the cath lab, but I suspect it is a big number in total.

So if you are truly interested in reducing your carbon footprint and doing your part to be "green," avoid a trip (or many) to the cath lab.

Wag the Dog

What if the system to provide heart care has already gotten as big as it should be?

Worse (for hospitals), what if it’s already far larger than it needs to be? Can the system continue to increase revenues if they’ve already attained titanic proportions and outgrown demand? After all, darn it, there are only so many sick people around.

Hospital administrators might have to face an unpleasant choice: downsize to strip excess capacity and suffer the consequences in a competitive market, or . . . fabricate demand for their services.

Like the Dustin Hoffman and Robert DeNiro characters in the movie, Wag the Dog, about how two media-manipulators divert public attention away from a Presidential sex scandal by fabricating a war, spin is everything. It’s enough to sidetrack public attention from a scandal, obscure a truth, send us on a useless detour.

If healthcare for the heart isn’t driven by need, but many still desire to reap the benefits of the procedure-focused system, why not increase the perceived need?

That’s precisely the course that many hospital systems have chosen to follow. If the market you serve has been tapped to its full potential, then grow the market.

Imagine if a company like General Motors were to operate this way. In 2006, for instance, GM sold 9.1 million automobiles. If GM executives were to decide that they’d like to outstrip Toyota by boosting sales by 10% to 10 million, how would they do it? They would first have to determine whether it was feasible to grow demand for their product. If deemed possible, the company would need to ramp up manufacturing capacity to anticipate increased demand. If they miscalculate, GM could be stuck with a costly surplus and have to swallow the costs, maybe selling leftovers at a loss. (We don’t mean to pick specifically on GM; they’re a fine company as far as we’re concerned. This is just a hypothetical illustration.)

But what if a company could concoct some sort of scheme to persuade the car-buying public that they just had to have their cars or trucks? In other words, they could, in effect, create demand for their products.

As perverse as it sounds, that is exactly what occurs in healthcare for heart disease. The system long ago exceeded the necessary level of infrastructure to maintain a high-quality level of care accessible to most Americans. Instead, it continues to grow through a distortion of perception, delivering more services of increasing complexity to larger and larger numbers of people.

The size of the market is therefore a manipulable thing, something that can be massaged and cultivated. There are a variety of clever ways to exaggerate the need for heart procedures.

Why not raise the alarm for heart disease every chance you get? When a local sports figure survived a heart attack here in Milwaukee, St. _____ marketing department was right there, broadcasting the process in TV ads after his recovery. What could be more American than baseball, apple pie . . . and St. _____ Hospital? After his hospital discharge, the 57-year old local icon was shown on the sidelines with his team, back on the job, and at home with family, all beaming, just three months after a bypass operation. “I received only the very best care at St. _____ Hospital. They treated me like family. St. _____ doctors and nurses are the best!” Predictably, a two-month long spike in hospital testing followed filled with people worried whether they, too, might be in imminent danger. Several local cardiologists boasted of the many sports figures who came through the stress testing and heart catheterization labs, though virtually all checked out to be fine.

Though it can serve a legitimate purpose in some situations, stress tests are the ultimate example of a heart scam built on the perception of danger. Pull people in with promises of reassuring them whether or not they have heart disease, only to provide murky results that usually do no such thing. The pitfalls of the test are turned to advantage. The all too common equivocal or mildly abnormal result can be converted into a hospital procedure. (Imagine you could perform such alchemy on the uncertain calculations on your income taxes.)

With millions of stress tests performed every year and the push to perform more and more screening tests, the market has, in effect, been expanded—even though no increase in the disease itself has actually occurred.

Beware: As the scramble for heart patients intensifies, you are going to feel like you are being pulled closer and closer into the jaws of this hungry monster called the American cardiovascular healthcare machine.

Heart scan book



There are only two books on heart scans available.

One, of course, is Track Your Plaque.

The other is the basic book on heart scans, What Does My Heart Scan Show?

Lost in the navigation column to the left on this blog is the link to get the electronic version of the book. In case you didn't know, we make this available for free.

If you're interested, just go here. This book can provide many basic answers to the questions that often arise regarding heart scans, such as the expected rate of increase in score, how your score compares to other people, when should a stress test be considered. Many heart scan centers use this book for educational purposes to help patients understand the importance of their heart scan scores.

(The sign-up for the book requires that an e-mail address be entered.)

The hard copy of What Does My Heart Scan Show? is available from Amazon, also, for $12.99.

Lies, damned lies, and statistics

In the last Heart Scan Blog post, I discussed the question of whether statin drugs provide incremental benefit when excellent lipid values are already achieved without drugs.

But I admit that I was guilty of oversimplification.

One peculiar phenomenon is that, when plaque-causing small LDL particles are reduced or eliminated and leave relatively benign large LDL particles in their place, conventional calculated LDL overestimates true LDL.

In other words, eliminate wheat from your diet, lose 25 lbs. Small LDL is reduced as a result, leaving large LDL. Now the LDL cholesterol from your doctor's office overestimates the true value.

Anne raised this issue in her comment on the discussion:

I eliminated wheat - and all grains - from my diet nearly three years ago (I eat low carb Paleo). My fish oils give me a total of 1680 mg EPA and DHA per day, and my vitamin D levels since last year have varied between 50 ng/ml and 80 ng/ml. However, my lipid profile is not like either John's or Sam's:

LDL cholesterol 154 mg/dl
HDL cholesterol 93 mg/dl
Triglycerides 36 mg/dl
Total cholesterol 255 mg/dl

My cardiologist and endocrinologist are happy with my profile because they say the ratios are good, no one is asking me to take a statin. My calcium score is 0.



However, if we were to measure LDL, not just calculate it from the miserably inaccurate Friedewald equation, we would likely discover that her true LDL is far lower, certainly <100 mg/dl. (My preferred method is the bull's eye accurate NMR LDL particle number; alternatives include apoprotein B, the main apoprotein on LDL.)

So Anne, don't despair. You are yet another victim of the misleading inaccuracy of standard LDL cholesterol determination, a number that I believe should no longer be used at all, but eliminated. Unfortunately, it would further confuse your poor primary care doctor or cardiologist, who--still believe in the sanctity of LDL cholesterol.

By the way, the so-called "ratios" (i.e., total cholesterol to HDL and the like) are absurd notions of risk. Take weak statistical predictors, manipulate them, and try to squeeze better predictive value out of them. This is no better than suggesting that, since you've installed new brakes on your car, you no longer are at risk for a car accident. It may reduce risk, but there are too many other variables that have nothing to do with your new brakes. Likewise cholesterol ratios.

Aspirin, Lipitor, and a low-fat diet

Despite all the hoopla heart disease receives in the media, I continue to marvel at how many people I meet who still think that aspirin, Lipitor, and a low-fat diet constitute an effective heart attack prevention program.

It doesn't. No more than washing your hands prevents all human infections. It helps, but it is a sad substitute for a real prevention program.

Of course, aspirin, Lipitor, and a low-fat diet is the same recipe followed by the unfortunate Tim Russert and his doctors. You know how that turned out. Mr. Russert's experience is far from unique.

What is so magical about aspirin, Lipitor and a low-fat diet?

There is a simple rationale behind this approach. Aspirin doesn't reduce atherosclerotic plaque growth, but it inhibits the propagation of a blood clot on top of a coronary plaque that has "ruptured," thereby reducing likelihood of heart attack (which occurs when the clot fills the artery). So aspirin only provides benefit if and when a plaque ruptures.

Lipitor and other statin drugs reduce LDL cholesterol, promote a modest relaxation of constricted plaque-filled arteries (normalization of endothelial dysfunction), and exerts other effects, such as inflammation suppression.

A low-fat diet is intended to reduce saturated fat that triggers LDL cholesterol formation and to encourage intake of whole grains that reduce cardiovascular events and LDL cholesterol.

If that is the extent of your heart disease prevention program, you will have a heart attack, bypass surgery, or stent--period. It may not be tomorrow or next Friday, or even next month. Aspirin, Lipitor, and a low-fat diet may delay your heart attack or procedure for a few years, but it will not stop it.

Some flaws in the aspirin, Lipitor, low-fat program:

--Aspirin can only exert so much blood clot-blocking effect. It can be overwhelmed by many other factors, such as increased blood viscosity, increased fibrinogen (a blood clotting protein that also triggers plaque), and plaque inflammation.
--Lipitor reduces LDL, but does not discriminate between the relatively harmless large LDL and the truly plaque-triggering small LDL--it reduces all LDL, but small LDL can still persist, even at extravagant levels since neither aspirin nor Lipitor specifically reduces small LDL, while a low-fat diet increases small LDL.
--Low-fat diet--A diet reduced in fat and loaded with plenty of "healthy whole grains" will trigger increased small LDL (an enormous effect), c-reactive protein, high blood sugar, resistance to insulin, high blood pressure, and an expanding abdomen ("wheat belly").


Aspirin, Lipitor and a low-fat diet do not address:

--Vitamin D deficiency
--Omega-3 fatty acid deficiency and the eicosanoid path to inflammation
--High triglycerides
--Small LDL particles
--Distortions of HDL "architecture"
--Lipoprotein(a)--the worst coronary risk factor nobody's heard of
--Thyroid status

In other words, the simple-minded, though hugely financially successful, conventional model of heart disease prevention is woefully inadequate.

Don't fall for it.

Statin drugs for everybody?

Who is better off?

John takes Crestor, 40 mg per day:

LDL cholesterol 60 mg/dl
HDL cholesterol 60 mg/dl
Triglycerides 60 mg/dl
Total cholesterol 132 mg/dl




Or Sam:

LDL cholesterol 60 mg/dl
HDL cholesterol 60 mg/dl
Triglycerides 60 mg/dl
Total cholesterol 132 mg/dl


who obtained these values through vitamin D normalization (to increase HDL); wheat elimination (to reduce triglycerides and LDL); and omega-3 fatty acids (to reduce triglycerides).


Believe the drug industry (motto: If some statin is good, more statin is better!), then John is clearly better off: He has obtained all the "benefits" of statin drugs. They refer to the "pleiotropic" effects of statin drugs, the presumed benefits that extend outside of cholesterol reduction. The most recent example are the JUPITER data that demonstrated 55% reduction in cardiovascular events in people with increased c-reactive protein (CRP). Media reports now unashamedly gush at the benefits of Crestor to reduce inflammation.

However, on Sam's program, elimination of wheat and vitamin D both exert anti-inflammatory effects on CRP, typically yielding drops of 70-90%--consistently, rapidly, and durably.

So which approach is really better?

In my experience, there is no comparison: Sam is far better off. While John will reduce his cardiovascular risk with a statin drug, he fails to obtain all the other benefits of Sam's broader, more natural program. John will not enjoy the same cancer protection, osteoporosis and arthritis protection, relief from depression and winter "blues," and increased mental and physical performance that Sam will.

If our goal is dramatic correction of cholesterol patterns and reduction of cardiovascular risk, for many, many people statin drugs are simply not necessary.
Do heart scans cause cancer?

Do heart scans cause cancer?

Another in a series of data extrapolations that attempt to predict long-term cancer risk from medical radiation exposure was published in the July 13, 2009 Archives of Internal Medicine, viewable here.

Over the years, I've fussed about the radiation dose used by some centers for CT heart scans. (Note: I'm talking about CT heart scans, not CT coronary angiograms, an entirely different test with different radiation exposure.) In the "old" days, when electron-beam devices (EBT) were the best on the block, the old single-slice CT scanners (the predecessor of the current 64-slice MDCT scanners) exposed patients to ungodly quantities of radiation, while the EBT devices required very small quantities (0.5 mSv or about the equivalent of 4 standard chest x-rays or one mammogram).

But CT technology has advanced considerably. While EBT has been phased out (although it was an exceptional technology, GE acquired the small California manufacturer, then promptly scrapped the operation; you can guess why), multi-detector CT (MDCT) technology has improved in speed, image quality, and radiation exposure.

While it has improved, radiation exposure still remains an issue. The authors of the study applied the scanning protocols used at three hospitals and those in several CT heart scan studies, then calculated radiation exposure. They found a more than ten-fold range of exposure, from 0.8 mSv to 10.5 mSv. (All scanners were MDCT, none EBT.)

That's precisely what I've been worrying about: In the rapid rush to develop new devices, radiation exposure has often been a neglected issue. While some scan centers do an excellent job and take steps to minimize exposure, others barely lift a finger and consequently expose their patients to unnecessary radiation.

However, it's not as bad as it sounds. For one, the study included 16-slice MDCT scanners, a scanner type that I warned people to not use because of radiation. On the current most popular 64-slice devices, much lower radiation exposure is possible, on the order of 0.8-1.2 mSv routinely--if the center takes the effort.

This study, while eye-opening, will achieve some good: CT heart scans are here to stay. But the day-to-day practice of heart scanning should be:

1) standardized
2) conducted with radiation exposure as low as possible, preferably <0.8 mSv


To read more about this issue, below I've reprinted a 2007 full Track Your Plaque Special Report, CT Heart Scans and Radiation: The Real Story.




CT heart scans and radiation: The real story

“My personal opinion is that many patients today who are receiving multiple CT scans may well be getting at least comparable doses to subjects that have now developed malignancies from x-ray radiation received in the 1930s and '40s. And, similar to those days when the doses were unknown, the dose that patients receive today over a course of years of multiple CT scans is also completely unknown . . .

“I recommend that all healthcare providers become familiar with the concept that 1 in 1000 CT studies of the chest, abdomen, or pelvis may result in cancer.”


Richard C. Semelka, MD
Professor and Vice Chairman, Department of Radiology
University of North Carolina–Chapel Hill



Is this just hype to generate headlines? Or is the truth buried in the enormous marketing clout of the medical device industry, among which the imaging device manufacturers reign supreme?

It’s been over 110 years since radiation was first used for medical imaging. Over those years, it has had its share of misadventures.

In the 1930s and 1940s, before the dangers of radiation were recognized, shoe shoppers had shoes fitted using an x-ray device of the foot to assess fit. High doses of radiation were used to shrink enlarged tonsils and extinguish overactive thyroid glands. Attitudes towards radiation were so lax that doctors commonly permitted themselves to be exposed without protection day after day, year after year, until an unexpected rise in blood cancers like leukemia was observed. As recently as the 1970s and 1980s, cancers like Hodgkins’ disease were treated with high doses of radiation, also leading to radiation-induced diseases decades later.

Not all radiation is bad. Radiation can also be used as a therapeutic tool and even today remains a useful and reasonably effective method to reduce the size, sometimes eliminate, certain types of cancer. Forty percent of people with cancer now receive some form of radiation as part of their treatment (Ron E 2003).


Just how much does medical radiation add to our exposure?

Estimates vary, but most experts estimate that medical imaging provides approximately 15% of total lifetime exposure. In other words, radiation exposure from medical imaging is simply a small portion of total exposure that develops over the years of life. Exposure can be much higher, however, in a specific individual who undergoes repeated radiation imaging or treatment of one sort or another.

For all of us, exposure to medical radiation is part of lifetime exposure from multiple sources, added to the radiation we receive from the world around us. Just by living on earth, we are exposed to radiation from space and naturally-occurring radioactive compounds, and receive somewhere around 3.0 mSv per year (U.S. Nuclear Regulatory Commission). (Doses for radiation exposure are commonly expressed in milliSieverts, mSv, a measure that reflects whole-body radiation exposure.) People living in high-altitude locales like Colorado get exposed to an additional 30–50% ambient radiation (1.0–1.5 mSv more per year).

Much of the information on radiation exposure comes from studies like the Life Span Study that, since 1961, has tracked 120,000 Japanese exposed to radiation from the atomic bombs dropped in 1945 (Preston DL et al 2003). Although regarded as a high-dose exposure study for obvious reasons, there are actually thousands of people in this study who were exposed to lesser quantities of radiation (because of distance from the bomb sites) who still display a “dose-response” increased risk for cancer many years later in life. Radiation exposures of as little as 5–20 mSv showed a slight increase in lifetime risk.

Occupational and excessive medical exposure to radiation also provides a “laboratory” to examine radiation risk. Miners exposed to radon gas; patients exposed to the imaging agent, Thorotrast, containing radioactive isotope thorium dioxide and used as an x-ray contrast agent in the 1930s and 1940s and possesses the curious property of lingering in the body for over 30 years after administration; radium injections administered between 1945 and 1955 to treat diseases like ankylosing spondylitis and tuberculosis, all provide researchers an opportunity to study the long-term effects of various types of radiation exposure over many years (Harrison JD et al 2003).

The excess exposure of workers and several hundred thousand nearby residents to the Mayak nuclear plant in Russia has also revealed a “dose-response” relationship, with increasing exposure leading to more cancers, including leukemia and solid cancers of the bone, liver, and lung (Shilnikova NS et al 2003). Nuclear waste released into the Techa river between 1948 and 1956 contaminated drinking water used by over 100,000 Russians. A plant explosion in 1957 also released an excess of radiation into the atmosphere, yielding exposure via inhalation. Some sources estimate that at least 272,000 people have been affected by radiation from the Mayak plant. This unfortunate situation has, however, yielded plenty of data on radiation exposure and its long-term effects.

It’s also been known for several decades that people who receive therapeutic radiation for treatment of cancer, even with the reduced doses now employed, are subject to increased risk of a second cancer consequent to the radiation treatment.

From experiences like this, radiation experts estimate that an exposure of 10 mSv increases a population’s risk for cancer by 1 in 1000 (Semelka RC et al 2007).

This question was recently thrust into the spotlight with publication of a study from Columbia University in New York suggesting that a 20-year old woman would be exposed to a lifetime risk of cancer as high as 1 in 143 consequent to the radiation received during a CT coronary angiogram. (Important note: This was estimated risk from a CT coronary angiogram, not a simple heart scan that we advocate for the Track Your Plaque program.) The risk at the low end of the spectrum would be in an 80-year old man (because of the shorter period of time to develop cancer), with a risk of 1 in 5017. If “gating” to the EKG is added (which many scan centers do indeed perform nowadays), risk for a 60-year old woman is estimated at 1 in 715; risk for a 60-year old male, 1 in 1911 (Einstein AJ et al 2007). This study generated some criticism, since it did not directly involve human subjects, but used “phantoms” or x-ray dummies to simulate x-ray exposure. Nonetheless, the point was made: CT coronary angiograms in current practice do indeed expose the patient to substantial quantities of radiation, sufficient to pose a lifetime risk of cancer.


The media frenzy

The NY Times ran an article called With Rise in Radiation Exposure, Experts Urge Caution on Tests in which they stated:

"According to a new study, the per-capita dose of ionizing radiation from clinical imaging exams in the United States increased almost 600 percent from 1980 to 2006. In the past, natural background radiation was the leading source of human exposure; that has been displaced by diagnostic imaging procedures, the authors said."

“This is an absolutely sentinel event, a wake-up call,” said Dr. Fred A. Mettler Jr., principal investigator for the study, by the National Council on Radiation Protection. “Medical exposure now dwarfs that of all other sources.”

Radiation is a widely used imaging tool in medicine. Although CT scans of the brain, bones, chest, abdomen, and pelvis account for only 5% of all medical radiation procedures, they are responsible for nearly 50% of medical radiation used. It’s been known for years that increasing radiation exposure increases cancer risk over many years, but the boom of newer, faster devices that provide more detailed images has opened the floodgates to expanded use of CT scanners.

But before we join in the hysteria, let's first take a look at exposure measured for different sorts of tests:


Typical effective radiation dose values for common tests

Computed Tomography

Head CT 1 – 2 mSv
Pelvis CT 3 – 4 mSv
Chest CT 5 – 7 mSv
Abdomen CT 5 – 7 mSv
Abdomen/pelvis CT 8 – 11 mSv
Coronary CT angiography 5 – 12 mSv


Non-CT

Hand radiograph Less than 0.1 mSv
Chest radiograph Less than 0.1 mSv
Mammogram 0.3 – 0.6 mSv
Barium enema exam 3 – 6 mSv
Coronary angiogram 5 – 10 mSv
Sestamibi myocardial perfusion (per injection) 6 – 9 mSv
Thallium myocardial perfusion (per injection) 26 – 35 mSv

Source: Cynthia H. McCullough, Ph.D., Mayo Clinic, Rochester, MN


A plain, everyday chest x-ray, providing less than 0.1 mSv exposure, provides about the same quantity of radiation exposure as flying in an airplane for four hours, or the same amount of radiation from exposure to our surroundings for 11–12 days. Similar exposure arises from dental x-rays.

If you have a heart scan on an EBT device, then your exposure is 0.5-0.6 mSv, roughly the same as a mammogram or several standard chest x-rays.

With a heart scan on a 16- or 64-slice multidetector device, exposure is ideally around 1.0-2.0 mSv, about the same as 2-3 mammograms, though dose can vary with this technology depending on how it is performed (gated to the EKG, device settings, etc.)

CT coronary angiography presents a different story. This is where radiation really escalates and puts the radiation exposure issue in the spotlight. As Dr. Cynthia McCullough's chart shows above, the radiation exposure with CT coronary angiograms is 5-12 mSv, the equivalent of 100 or more chest x-rays or 20 mammograms. Now, that's a problem.

The exposure is about the same for a pelvic or abdominal CT. The problem is that some centers are using CT coronary angiograms as screening procedures and even advocating their use annually. This is where the alarm needs to be sounded. These tests, as wonderful as the information and image quality can be, are not screening tests. Just like a pelvic CT, they are diagnostic tests done for legitimate medical questions. They are not screening tests to be applied broadly and used year after year.

It’s also worth giving second thought to any full body scan you might be considering. These screening studies include scans of the chest, abdomen, and pelvis. These scans, performed for screening, expose the recipient to approximately 10 mSv of radiation (Radiological Society of North American, 2007). Debate continues on whether the radiation exposure is justified, given the generally asymptomatic people who generally undergo these tests.

Always be mindful of your radiation exposure, as the NY Times article rightly advises. However, don't be so frightened that you are kept from obtaining truly useful information from, for instance, a CT heart scan (not angiography) at a modest radiation cost.


Heart scans, CT coronary angiograms and the future

Unfortunately, practicing physicians and those involved in providing CT scans are generally unconcerned with radiation exposure. The majority, in fact, are entirely unaware of the dose of radiation required for most CT scan studies and unaware of the cancer risk involved. It is therefore up to the individual to insist on a discussion of the type of scanner being used, the radiation dose delivered (at least in general terms), the necessity of the test, alternative methods to obtain the same diagnostic information, all in the context of lifetime radiation exposure.

Our concerns about radiation exposure all boil down to concern over lifetime risk for cancer, a disease that strikes approximately 20% of all Americans. Many factors contribute to cancer risk, including obesity, excessive saturated fat intake, low fiber intake, lack of vitamin D, repeated sunburns, excessive alcohol use, smoking, exposure to pesticides and other organochemicals, asbestos and other industrial exposures, electromagnetic wave exposure, and genetics. Radiation is just one source of risk, though to some degree a controllable one.

Some people, on hearing this somewhat disturbing discussion, refuse to ever have another medical test requiring radiation. That’s the wrong attitude. It makes no more sense than wearing lead shielding on your body 24 hours a day to reduce exposure from the atmosphere. Taken in the larger context of life, radiation exposure is just one item on a list of potentially harmful factors.

It is, however, worth some effort to minimize radiation exposure over your lifetime, particularly before age 60, and by submitting to high-dose testing only when truly necessary, or when the potential benefits outweigh the risks. Thus, with heart scans and CT coronary angiography, some thought to the potential benefits of knowing your score or the information gained from the CT angiogram need to be considered before undergoing the test. Often the practical difficulty, of course, is that your risk for heart disease simply cannot be known until after the test.

In our view, in the vast majority of instances a simple CT heart scan can serve the simple but crucial role of quantifying risk for heart attack and atherosclerotic plaque. CT heart scans yield this information with less than a tenth of the radiation exposure of a CT coronary angiogram. In people without symptoms and a normal stress test, there is rarely a need for CT coronary angiography with present day levels of radiation exposure. Perhaps as technology advances and the radiation required to generate images is reduced, then we should reconsider.

Early experiences are suggesting that the newest 256-slice scanners, now being developed but not yet available, will cut the dose exposure of 64-slice CT angiograms in half (from 27.8 mSv to 14.1 mSv in a recent Japanese study). The 256-slice scanners will allow scanning that is faster over a larger area in a given period of time.

Thankfully, the scanner manufacturers are increasingly sensitive to the radiation issue and have been working on methods to reduce radiation exposure. However, it still remains substantial.


References:
Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 2007 Jul 18;298(3):317–323.

Harrison JD, Muirhead CR. Quantitative comparisons of cancer induction in humans by internally deposited radionuclides and external radiation. Int J Radiat Biol 2003 Jan;79(1):1–13.

Hausleiter J, Meyer T, Hadamitzyky M et al. Radiation Dose Estimates From Cardiac Multislice Computed Tomography in Daily Practice: Impact of Different Scanning Protocols on Effective Dose Estimates. Circulation 2006;113:1305–1310.

Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard J, Saini S. Strategies for CT radiation dose optimization. Radiology 2004;230:619–628.

Mayo JR, Aldrich J, Müller NL. Radiation exposure at chest CT: A statement of the Fleischner Society. Radiology 2003; 228:15–21.

Mori S, Nishizawa K, Kondo C, Ohno M, Akahane K, Endo M. Effective doses in subjects undergoing computed tomography cardiac imaging with the 256-multislice CT scanner. Eur J Radiol 2007 Jul 10; [Epub ahead of print].

Preston DL, Pierce DA, Shimizu Y, Ron E, Mabuchi K. Dose response and temporal patterns of radiation-associated solid cancer risks. Health Phys 2003 Jul;85(1):43–46.

Ron E. Cancer risks from medical radiation. Health Phys 2003 Jul;85(1):47–59.

Shilnikova NS, Preston DL, Ron E et al. Cancer mortality risk among workers at the Mayak nuclear complex. Radiation Res 2003 Jun;159(6):787–798.

Semelka RC, Armao DM, Elias J Jr, Huda W. Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J Magn Reson Imaging 2007 May;25(5):900–9090.


Copyright 2007, Track Your Plaque.

Comments (3) -

  • Anne

    7/16/2009 11:38:08 AM |

    I remember those x-ray devices at the shoe store. It was fun looking at the bones in my feet. I also got to play with mercury when I visited an amateur chemist in the neighborhood. He would pour a little mercury in our hands and we would roll it around.

    I wonder what my radiation dose was in the years I was having coronary blockage. I went through 6 coronary caths - 4 were stents. Then I had bypass. Yearly mammograms and dental xrays. Bone density testing every 3 yrs. There are websites where one can add up all their radiation exposure including and estimate of environmental exposure too.

  • Brate

    7/17/2009 5:46:33 AM |

    Sometimes for a patient, it is more a comfort than the technology which we generally try to run for. And does it really matter for a heart patient having an artery blockage or having their valves dismantled that what amount of radiation they are incurring. The question is, is there any feasible reason to question the ability of such tests. These tests have been a boon for both doctors to help them diagnose the problems, and for the patients to help them have a better life. But yes, advancements in the technology should be a possible solution. But it’s not always the best solution to the problem. Advancements in the technology have greatly diversified the perception of people towards healthcare. People used to be frightened when they were prescribed for any test, or were forwarded to hospital. But now, because of the amount of advancements in technology and also the amount of soft-care has changed the age-old perception of healthcare. Now, people feel free to have a medical checkup. The amount of comfort they feel though surrounded by some most complex machineries in the world is the achievement that technology has got. The concepts like concierge medicine and Boutique medical practice has revolutionized the basic fundamentals of healthcare. Many hospitals and medical service providers: Cleveland clinic, Mayo Clinic, Elite health, to name a few, have completely revolutionized the concept of older concierge medicine. The amount of care added with treatment makes a trip to hospital a better journey. All the requirements starting from transportation, stay in the hotel, appointments, etc are one phone away with these concierge plans. Increasingly people are opting for concierge facilities. The overall information regarding concierge plan is described here:
    https://www.clevelandclinic.org/thoracic/Concierge/Concierge.htm
    http://www.mayoclinic.org/travel-rst/concierge-services.html
    http://www.elitehealth.com/concierge_healthcare.php

  • buy jeans

    11/3/2010 4:57:15 PM |

    However, it's not as bad as it sounds. For one, the study included 16-slice MDCT scanners, a scanner type that I warned people to not use because of radiation. On the current most popular 64-slice devices, much lower radiation exposure is possible, on the order of 0.8-1.2 mSv routinely--if the center takes the effort.

Loading