Calling all super-duper weight losers!






Have you lost at least 1/2 your weight, e.g., 300 lbs down to 150 lbs? If you have, I have a major national magazine editor looking to talk to you.

If you have gone wheat-free and/or followed the dietary advice offered here in The Heart Scan Blog or through the Track Your Plaque program and would be willing to share your story, please let me know by commenting below. While losing half your body weight is not necessarily a requirement for health, it makes an incredibly inspiring story for others.

If we use your story, I will set aside a copy of my soon-to-be-released book, Wheat Belly.

Lp(a): Be patient with fish oil

High-dose omega-3 fatty acids from fish oil has become the number one strategy for reduction of lipoprotein(a), Lp(a), in the Track Your Plaque program for gaining control over coronary plaque and heart disease risk.

The original observations made in Tanzanian Bantus in the Lugalawa Study by Marcovina et al first suggested that higher dietary exposure to fish and perhaps omega-3 fatty acids from fish were associated with 40% lower levels of Lp(a). Interestingly, higher omega-3 exposure was also associated with having the longer apo(a) "tails" on Lp(a) molecules, a characteristic associated with more benign, less aggressive plaque-causing behavior.

Of course, the 600+ fish- consuming Bantus in the study consumed fish over a lifetime, from infancy on up through adulthood. So what is the time course of response if us non-Bantus take higher doses of fish oil to reduce Lp(a)?

We have been applying this approach in the Track Your Plaque program and in my office practice for the past few years. To my surprise, the majority of people taking 6000 mg per day of omega-3 fatty acids, EPA and DHA, will drop Lp(a) after one year.  Some have required two years.  Therefore checking Lp(a) after, say, 3 or 6 months, is nearly useless. (An early response does, however, appear to predict a very vigorous 1-2 year response.)

I'm sure that there is an insightful lesson to be learned from the incredibly slow response, but I don't currently know what it is.  But this strategy has become so powerful, despite its slow nature, that it has allowed many people to back down on niacin.

Baby your pancreas

There it is, sitting quietly tucked under your diaphragm, nestled beneath layers of stomach and intestines, doing its job of monitoring blood sugar, producing insulin, and secreting the digestive enzymes that allow you to convert a fried egg, tomato, or dill pickle into the components that compose you.

But, if you've lived the life of most Americans, your pancreas has had a hard life. Starting as a child, it was forced into the equivalent of hard labor by your eating carbohydrate-rich foods like Lucky Charms, Cocoa Puffs, Hoho's, Ding Dongs, Scooter Pies, and macaroni and cheese. Into adolescent years and college, it was whipped into subservient labor with pizza, beer, pretzels, and ramen noodles. As an adult, the USDA, Surgeon General's office and other assorted purveyors of nutritional advice urged us to cut our fat, cholesterol, and eat more "healthy whole grains"; you complied, exposing your overworked pancreas to keep up its relentless work pace, spewing out insulin to accommodate the endless flow of carbohydrate-rich foods.

So here we are, middle aged or so, with pancreases that are beaten, worn, hobbling around with a walker, heaving and gasping due to having lost 50% or more of its insulin-producing beta cells. If continued to be forced to work overtime, it will fail, breathing its last breath as you and your doctor come to its rescue with metformin, Actos, Januvia, shots of Byetta, and eventually insulin, all aimed at corralling the blood sugar that your failed pancreas was meant to contain.

What if you don't want to rescue your flagging pancreas with drugs? What if you want to salvage your poor, wrinkled, exhausted pancreas, eaking out whatever is left out of the few beta cells you have left?

Well, then, baby your pancreas. If this were a car with 90,000 miles on it, but you want it to last 100,000, then change the oil frequently, keep it tuned, and otherwise baby your car, not subjecting it to extremes and neglect to accelerate its demise. Same with your pancreas: Allow it to rest, not subjecting it to the extremes of insulin production required by carbohydrate consumption. Don't expose it to foods like wheat flour, cornstarch, oats, rice starch, potatoes, and sucrose that demand overtime and hard labor out of your poor pancreas. Go after the foods that allow your pancreas to sleep through a meal like eggs, spinach, cucumbers, olive oil, and walnuts. Give your pancreas a nice back massage and steer clear of "healthy whole grains," the nutritional equivalent of a 26-mile marathon. Pay your pancreas a compliment or two and allow it to have occasional vacations with a brief fast.

Bread equals sugar

Bread, gluten-free or gluten-containing, in terms of carbohydrate content, is equivalent to sugar.

Two slices of store-bought whole grain bread, such as the gluten-free bread I discussed in my last post, equals 5- 6 teaspoons of table sugar:








 

 

 

 

 

 

 

 

Some breads can contain up to twice this quantity, i.e., 10-12 teaspoons equivalent readily-digestible carbohydrate.

Gluten-free carbohydrate mania

Here's a typical gluten-free product, a whole grain bread mix. "Whole grain," of course, suggests high-fiber, high nutrient composition, and health.



 

 

 

 

 

 

 

 

What's it made of? Here's the ingredient list:
Cornstarch, Tapioca Starch, Whole Grain Sorghum Flour, Whole Grain Teff Flour, Whole Grain Amaranth Flour, Soy Fiber, Xanthan Gum, Soy Protein, Natural Cocoa and Ascorbic Acid

In other words, carbohydrate, carbohydrate, carbohydrate, carbohydrate and some other stuff. It means that a sandwich with two slices of bread provides around 42 grams net carbohydrates, enough to send your blood sugar skyward, not to mention trigger visceral fat formation, glycation, small LDL particles and triglycerides.

Take a look at the ingredients and nutrition facts on the label of any number of gluten-free products and you will see the same thing. Many also have proud low-fat claims.

This is how far wrong the gluten-free world has drifted: Trade the lack of gluten for a host of unhealthy effects.

Gluten-free is going DOWN

The majority of gluten-free foods are junk foods.

People with celiac disease experience intestinal destruction and a multitude of other inflammatory conditions due to an immune response gone haywire. The disease  is debilitating and can be fatal unless all gliadin/gluten sources are eliminated, such as wheat, barley, and rye.

A gluten-free food industry to provide foods minus gliadin/gluten has emerged, now large enough to become an important economic force. Even some Big Food companies are getting into the act, like Kraft, that now lists foods they consider gluten-free.

So we have gluten-free breads, cupcakes, scones, pretzels, breakfast cereals, crackers, bagels, muffins, pancake mixes and on and on. All are made with ingredients like brown rice flour, cornstarch, tapioca starch, and potato starch. Occasionally, they are made with amaranth, teff, or quinoa, other less popular, but gluten-free, grains.

Problem: These gluten-free ingredients, while lacking gliadin and gluten, make you fat and diabetic. They increase visceral fat, cause blood sugar to skyrocket higher than nearly all other foods (even higher than wheat, which is already pretty bad), trigger formation of small LDL and triglycerides, and are responsible for exaggerated postprandial (after-eating) lipoprotein distortions. They cause heart disease, cataracts, arthritis, and a wide range of other conditions, all driven by the extreme levels of glycation they generate.

Eliminating all things wheat from the diet is one of the most powerful health strategies I have ever witnessed. But replacing lost wheat with manufactured gluten-free foods is little better than replacing your poppyseed muffin with a bowl of jelly beans.

Whenever we've relied on the food industry to supply a solution, they've managed to bungle it. Saturated fat was replaced with hydrogenated fat and polyunsaturates; sucrose replaced with high-fructose corn syrup. Now, they are replacing wheat gluten-containing foods with junk carbohydrates.

For this reason, I am bringing out a line of recipes and foods that will be wheat gliadin/gluten-free, do NOT contain the junk carbohydrates that gluten-free foods are made of, and are genuinely healthy. They are tasty, to boot.

The gluten-free industry needs to smarten up. Having a following that is free of cramps and diarrhea but are obese, diabetic, and hobbling on arthritic knees and hips is good for nobody.

Medicine ain't what it used to be

The practice of medicine ain't what it used to be.

For instance:

White coats are out-of-date--Not only do they serve as filthy reservoirs of microorganisms (since they hang unwashed after repeated use week after week), they only serve to distance the practitioner from the patient, an outdated notion that should join electroshock therapy to treat homosexuality and other "disorders" in the museum of outdated medical practices.

Normal cholesterol panel . . . no heart disease?

I often hear this comment: "I have a normal cholesterol panel. So I have low risk for heart disease, right?"

While there's a germ of truth in the statement, there are many exceptions. Having "normal" cholesterol values is far from a guarantee that you won't drop over at your daughter's wedding or find yourself lying on a gurney at your nearest profit-center-for-health, aka hospital, heading for the cath lab.

Statistically, large populations do indeed show fewer heart attacks at the lower end of the curve for low total and  LDL cholesterol and the higher end of HDL. But that's on a population basis. When applied to a specific individual, population observations can fall apart. Heart attack can occur at the low risk end of the curve; no heart attack can occur at the high risk end of the curve.

First of all, to me a "normal" lipid panel is not adhering to the lax notion of "normal" specified in the lab's "reference range" drawn from population observations. Most labs, for instance, specify that an HDL cholesterol of 40 mg/dl or more and triglycerides of 150 mg/dl or less are in the normal ranges. However, heart disease can readily occur with normal values of, say, an HDL of 48 mg/dl and triglycerides of 125 mg/dl, both of which allow substantial small oxidation-prone LDL particles to develop. So "normal" may not be ideal or desirable. Look at any study comparing people with heart disease vs. those without, for instance: Typical HDLs in people with heart attacks are around 46 mg/dl, while HDLs in people without heart attacks typically average 48 mg/dl--there is nearly perfect overlap in the distribution curves.

There are also causes for heart disease that are not revealed by the lipid values. Lipoprotein(a), or Lp(a), is among the most important exceptions: You can have a heart attack, stroke, three stents or bypass surgery at age 40 even with spectacular lipid values if you have this genetically-determined condition. And it's not rare, since 11% of the population express it. How about people with the apo E2 genetic variation? These people tend to have normal fasting cholesterol values (if they have only one copy of E2, not two) but have extravagant abnormalities after they eat that contribute to risk. You won't know this from a standard cholesterol panel.

Vitamin D deficiency can be suggested by low HDL and omega-3 fatty acid deficiency suggested by higher triglycerides, but deficiencies of both can exist in severe degrees even with reasonably favorable ranges for both lipid values. Despite the recent inane comments by the Institute of Medicine committee, from what I've witnessed from replacing vitamin D to achieve serum 25-hydroxy vitamin D levels of 60-70 ng/ml, vitamin D deficiency is among the most powerful and correctable causes of heart disease I've ever seen. And, while greater quantities of omega-3 fatty acids from fish oil are associated with lower triglycerides, they are even better at reducing postprandial phenomena, i.e., the after-eating flood of lipoproteins like VLDL and chylomicron remnants, that underlie formation of much atherosclerotic plaque--but not revealed by fasting lipids.

I view standard cholesterol panels as the 1963 version of heart disease prediction. We've come a long way since then and we now have far better tools for prediction of heart attack. Yet the majority of physicians and the public still follow the outdated notion that a cholesterol panel is sufficient to predict your heart's future. Nostalgic, quaint perhaps, but as outdated as transistor radios and prime time acts on the Ed Sullivan show.

 

Idiot farm

The notion of genetic modification of foods and livestock is a contentious issue. The purposeful insertion or deletion of a gene into a plant or animal's genome to yield specific traits, such as herbicide resistance, nutritional composition, or size, prompted the Codex Alimentarius Commission, an international effort to regulate the safety of foods, to issue guidelines concerning genetically-modified foods.

The committee is aware of the concept of unintended effects, i.e., effects that were not part of the original gene insertion or deletion design. In their report, last updated in 2009, they state that:

Unintended effects can result from the random insertion of DNA sequences into the plant genome, which may cause disruption or silencing of existing genes, activation of silent genes, or modifications in the expression of existing genes. Unintended effects may also result in the formation of new or changed patterns of metabolites. For example, the expression of enzymes at high levels may give rise to secondary biochemical effects or changes in the regulation of metabolic pathways and/or altered levels of metabolites.

They make the point that food crops generated using techniques without genetic modification are released into the food supply without safety testing:

New varieties of corn, soybean, potatoes and other common food plants are evaluated by breeders for agronomic and phenotypic characteristics, but generally, foods derived from such new plant varieties are not subjected to the rigorous and extensive food safety testing procedures, including studies in animals, that are typical of chemicals, such as food additives or pesticide residues, that may be present in food.

In other words, conventional plant breeding techniques, such as hybridization, backcrossing, and introgression, practices that include crossing parental plants with their progeny over and over again or crossing a plant with an unrelated plant, yield unique plants that are not subject to any regulation. This means that unintended effects that arise are often not identified or tested. Plant geneticists know that, when one plant is crossed with another, approximately 5% of the genes in the offspring are unique to that plant and not present in either parent. It means that offspring may express new characteristics, such as unique gliadin or gluten proteins in wheat, not expressed in either parent and with new immunological potential in consuming humans.

Dr. James Maryanski, the FDA's Biotechnology Coordinator, stated during Congressional testimony in 1999 that:

The new gene splicing techniques are being used to achieve many of the same goals and improvements that plant breeders have sought through conventional methods. Today's techniques are different from their predecessors in two significant ways. First, they can be used with greater precision and allow for more complete characterization and, therefore, greater predictability about the qualities of the new variety. These techniques give scientists the ability to isolate genes and to introduce new traits into foods without simultaneously introducing many other undesirable traits, as may occur with traditional breeding. [Emphasis mine.]

Efforts by the Codex Alimentarius and FDA are meant to control the introduction and specify safety testing procedures for genetically modified foods. But both organizations have publicly stated that there is another larger problem that has not been addressed that predates genetic modification. In other words, conventional methods like hybridization techniques, the crossing of different strains of a crop or crossing two dissimilar plants (e.g., wheat with a wild grass) have been practiced for decades before genetic modification became possible. And it is still going on.

In other words, the potential hazards of hybridization, often taken to extremes, have essentially been ignored. Hybridized plants are introduced into the food supply with no question of human safety. While hybridization can yield what appear to be benign foods, such as the tangelo, a hybrid of tangerines and grapefruit, it can also yield plants containing extensive unintended effects. It means that unique immunological sequences can be generated. It might be a unique gliadin sequence in wheat or a unique lectin sequence in beans. None are tested prior to selling to humans. So the world frets over the potential dangers of genetic modification while, all along, the much larger hazard of hybridization techniques have been--and still are--going on.

Imagine we applied the hybridization techniques applied by plant geneticists to humans, mating an uncle with his niece, then having the uncle mate again with the offspring, repeating it over and over until some trait was fully expressed. Such extensive inbreeding was practiced in the 19th century German village of Dilsberg, what Mark Twain described as "a thriving and diligent idiot factory."

Eat triglycerides

Dietary fats, from olive oil to cocoa butter to beef tallow, are made of triglycerides.

Triglycerides are simply three ("tri-") fatty acids attached to a glycerol backbone. Glycerol is a simple 3-carbon molecule that readily binds fatty acids. Fatty acids, of course, can be saturated, polyunsaturated, and monounsaturated.

Once ingested, the action of the pancreatic enzyme, pancreatic lipase, along with bile acids secreted by the gallbladder, remove triglycerides from glycerol. Triglycerides pass through the intestinal wall and are "repackaged" into large complex triglyceride-rich (about 90% triglycerides) molecules called chylomicrons, which then pass into the lymphatic system, then to the bloodstream. The liver takes up chylomicrons, removes triglycerides which are then repackaged into triglyceride-rich very low-density lipoproteins (VLDL).

So eating triglycerides increases blood levels of triglycerides, repackaged as chylomicrons and VLDL.

Many physicians are frightened of dietary triglycerides, i.e, fats, for fear it will increase blood levels of triglycerides. It's true: Consuming triglycerides does indeed increase blood levels of triglycerides--but only a little bit. Following a fat-rich meal of, say, a 3-egg omelet with 2 tablespoons of olive oil and 2 oz whole milk mozzarella cheese (total 55 grams triglycerides), blood triglycerides will increase modestly. A typical response would be an increase from 60 mg/dl to 80 mg/dl--an increase, but quite small.

Counterintuitively, it's the foods that convert to triglycerides in the liver that send triglycerides up, not 20 mg/dl, but 200, 400, or 1000 mg/dl or more. What foods convert to triglycerides in the liver? Carbohydrates.

After swallowing a piece of multigrain bread, for instance, carbohydrates are released by salivary and gastric amylase, yielding glucose molecules. Glucose is rapidly absorbed through the intestinal tract and into the liver. The liver is magnificently efficient at storing carbohydrate calories by converting them to the body's principal currency of energy, triglycerides, via the process of de novo lipogenesis, the alchemy of converting glucose into triglycerides for storage. The effect is not immediate; it may require many hours for the liver to do its thing, increasing blood triglycerides many hours after the carbohydrate meal.

This explains why people who follow low-fat diets typically have high triglyceride levels--despite limited ingestion of triglycerides. When I cut my calories from fat to 10% or less--a very strict low-fat diet--my triglycerides are 350 mg/dl. When I slash my carbohydrates to 40-50 grams per day but ingest unlimited triglycerides like olive oil, raw nuts, whole milk cheese, fish oil and fish, etc., my triglycerides are 50 mg/dl.

Don't be afraid of triglycerides. But be very careful with the foods that convert to triglycerides: carbohydrates.

 

 

 

 

 

 

 
Are sterols the new trans fat?

Are sterols the new trans fat?

By now, I'm sure you're well-acquainted with the hydrogenated, trans fat issue.

Hydrogenation of polyunsaturated oils was a popular practice (and still is) since the 1960s, as food manufacturers sought a substitute for saturated fat. Bubbling high-pressure hydrogen through oils like cottonseed, soybean, and corn generates trans fatty acids. These man-made fatty acids, while safe in initial safety testing, proved to be among the biggest nutritional mistakes of the 20th century.

Trans fatty acids have been associated with increased LDL cholesterol, reduction in HDL, oxidative reactions, abnormal rigidity when incorporated into cell membranes, and cancer. Trans fats still dominate many processed foods like chips, cookies, non-dairy creamers, food mixes, and thousands of others. They're also found prominently in fast foods.

Fast forward to today, and most Americans have become aware of the dangers of trans fats and many try to avoid them.

But I worry there is yet another substance that has worked its way into the American processed food cornucopia that has some potential for repeating the trans fat debacle: sterol esters.


Sterols are naturally-occurring oils found in vegetables, nuts, and numerous other foods in small quantities. Most of us take in 200-400 milligrams per day just by eating plant-sourced foods.

Curiously, the chemical structure of sterols are very similar to human cholesterol (differing at one carbon atom). Sterols, by not fully understood means, block the intestinal absorption of cholesterol. Thus, sterol esters, as well as the similar stanol esters, have been used to reduce blood levels of total and LDL cholesterol.

So far, so good.

The initial commercial products, released in the late 1990s, were Take Control (sterol) and Benecol (stanol), both of which were marketed to reduce cholesterol when 2-3 tbsp are used daily, providing 3400 – 5100 mg of sterol or stanol esters, about 10- to 20-fold more than we normally obtain from foods. Several clinical trials have conclusively confirmed that these products reduce cholesterol levels.

They do indeed perform as advertised. Add either product to your daily diet and LDL cholesterol is reduced by about 10-15%. In fact, in the original Track Your Plaque book, these products were advocated as a supplemental means of reducing LDL when other methods fell short.

In 2008, there are now hundreds of products that have additional quantities of sterol esters in them, such as orange juice, mayonnaise, yogurt, breakfast cereals, even nutritional supplements. Most of these products proudly bear claims like "heart healthy." Stanol esters have not enjoyed the same widespread application. (I believe there may be patent issues or other considerations. However, it's the sterols that are the principal topic here, not stanols.)

Now, here's where it gets a bit tricky. There is a rare (1 per million) disease called sitosterolemia, a genetic disorder that permits the afflicted to absorb more than the usual quantity of sterols from the intestine. While you and I obtain some amount of sterols from plant-based foods, absorption is poor, and we absorb <10% of sterols ingested. However, people with sitosterolemia absorb sterols far more efficiently, resulting in high blood levels of sterols that result in coronary disease and aortic valve disease, with heart attacks occurring as young as late teens or 20s. Treatment to block sterol absorption are used to treat these people.

There are also a larger number, though still uncommon (1/500) of people who have only one of the two genes that young people with sitosterolemia have. These people may have an intermediate capacity for sterol absorption.

Okay, so what does this have to do with you? Well, if you and I now take in 10-20 times greater amounts of sterol esters, do our blood levels of sterols increase?

Several studies now suggest that, yes, sterol blood levels increase with sterol ingestion. One study from Finland, the STRIP Study, showed that children who had double usual sterol intake increased blood levels by around 50%.

Similarly, a Johns Hopkins study in adults with only one of the genes ("heterozygotes") for sitosterolemia increased sterol blood levels by between 54-116% by ingesting 2200 mg of sterols added per day, despite reduction of LDL cholesterol levels.

Even people with neither gene for sitosterol hyperabsorption can increase their blood levels of sterols. But the crucial question: Do the blood levels of sterols that occur in unaffected people or in heterozygotes increase the risk of coronary heart disease? The answer is not known.

Despite the several clinical trials performed with sterol esters, all of them have examined LDL and total cholesterol reduction as endpoints, not cardiovascular events. It is conceivable that, while sterol esters reduce cholesterol, risk for heart disease is increased due to higher blood levels of sterols.

The question is not settled. For now, it is just a suspicion. But that's enough for me to steer clear of processed foods supplemented with these uncertain sterol esters. My previous recommendations for sterol ester products will be removed with the next edition of Track Your Plaque. Until we have solid evidence that there are no adverse cardiovascular effects of sterol esters, in my view they should not be part of anyone's heart-disease prevention program.

(The same argument does not seem to apply to stanol esters, such as that contained in butter-substitute Benecol, since stanol esters are not absorbed at all and remain confined to the intestine.)

Comments (16) -

  • lizzi

    9/13/2008 3:36:00 PM |

    My thoughts exactly.  I,too, used to use and recommend sterol ester containing margarine.  Stanols,as you pointed out, aren't absorbed, but who knows if they are worth the money. Obviously not everything that lowers our cholesterol is good for us. Still, lowering your cholesterol by 15% makes many of us feel like we just got an A+ on our report card, regardless of whether or not we have done something good for our health.
    I do believe that fish oil raises LDL cholesterol (probably large fluffy LDL) as it lowers triglycerides. But the evidence seems overwhelming that DHA and EPA are good for my health. But then I shudder about my report card.  Off smart balance, on Ghee, on 3,000 mg/day DHA/EPA.....

    Now they are esterifying fish oil. Lovasa, Big Pharma's new improved fish oil.  Now made more chemically stable. I wonder about it too. Is it the new trans fish oil?

  • Peter Silverman

    9/13/2008 8:28:00 PM |

    Since you wrote about how good almonds are for lowering LDL and how about half the calories don't get absorbed I have been eating close to half pound a day.  I wonder if that's a lot of sterol.

  • rabagley

    9/14/2008 1:54:00 AM |

    The next frankenfood.  Sigh.  When will we, as a culture, learn that it's extraordinarily difficult to synthesize something as nutritious and as wholesome as what nature provides?

    Give me butter, eggs, whole milk, chicken with skin on, and red meat with a healthy rind of fat any day of the week.  Twice on Sunday.

    On a diet dominated by those foods, my weight is steady as a rock and my lipid panel has never been better.

  • Anonymous

    9/14/2008 5:21:00 PM |

    The previous poster made an interesting comment abour esterified fish oil, which I am hoping Dr. Davis writes about one of these days.

    Fish oil's natural form is triglyceride, I believe, and there are only a couple of brands out there that sell this form. Everything else is ester.

    But is one form healthier than another? I know of 2 absorption studies that state omega-3 esters are the worst form regarding absorption. And are there any unknown health risks from taking altered Omega 3s long term?

    I'm personally sticking with the triglyceride form of fish oil for now, until this issue is studied properly.

  • lizzi

    9/16/2008 4:14:00 PM |

    A recent reference:  Vascular effects of plant sterols, Weingartner O, J Amer Clin Cardiol April 22, 2008.
       Mice with higher plant sterol levels had significantly more endothelial damage than those with low levels.

  • Anonymous

    9/17/2008 4:14:00 PM |

    Interesting discussion. I'm nurse practitioner (male). I've been fine tuning my diet and looking into fish oil's benefits for some time, as well as taking it.

    Would anyone know of non-esterified fish oil source(s) ?

    Also, with regards to the food content of esters, how do we know how to avoid them, since I can't seem to recall if labels display whether or not esters are part of the ingredients/manufacturing method.

    Thanks

  • Chipdouglas

    9/17/2008 4:20:00 PM |

    I'm a nurse practitioner (male) ever optimizing my diet, exercise and other modifiable risk factors for CVD.

    Regarding fish oil, would anyone know of company(ies0 manufacturing ester-free fish oil ? I recall one poster mentioning that most are esterified though.

    So far as foods, I don't think esters are shown on any food label--although I might be off. So, how would one avoid esters in foods, as it seems to be a growing issue.

    Many thanks.

  • Marilyn Mann

    9/18/2008 2:52:00 PM |

    Here's a post on this topic from another blog:

    http://www.gooznews.com/archives/001187.html

  • Anonymous

    9/18/2008 11:26:00 PM |

    "FACT: Researchers in Norway found that when 14 healthy male volunteers took equivalent amounts of omega-3 as ethyl esters or glycerol esters (triglyceride form), the absorption from both forms of omega-3 was just as good. As reported in the medical journal, “Thus, after administration twice daily for 14 days, the amounts of EPA and DHA in total serum lipids and in serum phospholipids were essentially identical for the two ester forms of the n-3 fatty acids.” [i]

    FACT: Another human study comparing the absorption of omega-3 fatty acids in the form of ethyl esters or triglycerides, showed that both were well absorbed and had produced results. According to the American Journal of Clinical Nutrition, “This study showed that n-3 fatty acids in fish oil given as ethyl esters or triglycerides were equally well absorbed.”[ii]"

    [i] The enteral bioavailability of eicosapentaenoic acid and docosahexaenoic acid is as good from ethyl esters as from glyceryl esters in spite of lower hydrolytic rates by pancreatic lipase in vitro. Biochim Biophys Acta 1993 May 20;1168(1):59-67

    [ii] Absorption of the n-3 eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides by humans. American Journal of Clinical Nutrition, 1991 Vol 53, 1185-1190


    "Res-Q 1250 offers an ethyl ester form of omega-3 which is appropriate for encapsulation (Res-Q 1250 Capsules), and a triglyceride form (Res-Q 1250 Liquid) which is appropriate for a liquid product."

    http://n3oceanic.blogspot.com/2008/09/triglycerides-versus-ethyl-esters-fact.html

  • susan

    10/6/2008 8:07:00 PM |

    I've noticed a huge increase in these and use them in both my cooking oil and margarine.  I wonder if I should switch?  It should just be common knowledge that there is a good and bad side to everything, I don't know why we are not more careful about this from the beginning.

  • Anonymous

    4/12/2009 7:24:00 AM |

    There is a review on plant sterol esters and hypercholesterolemia:

    http://eurheartj.oxfordjournals.org/cgi/content/extract/30/4/404

    It is open access !

  • Anonymous

    4/13/2009 7:50:00 AM |

    Interesting review on plant sterol esters! Seems to be a pretty hot discussion. Wounder why the stuff is still available !!!

  • patricia

    9/9/2009 4:31:11 PM |

    my 3 year old grandson has sitosterolemia and because of the way our food today is made with all the sterols to keep us healthy it is virtually impossible to buy him anything that it is ok for him to eat .   Plant sterols are in almost everything but not always advertised that they are there.   The long term outlook for our grandson is pretty bleak and i would be gratefull if anyone could give us some ideas on what it is actually possible for him to eat.

  • Anonymous

    9/10/2009 2:10:45 AM |

    To Patricia.  I am sorry that your grandson has sitosterolemia.  I am a 60-ish mother of three grown men and I raised them all on home cooking of whole foods: Fruits, vegetables, lean meats, lean dairy, cheese, yogurt, eggs, nuts, wild rice, small amounts of potatoes, olive oil and small amounts of butter. I was not a stay at home mom, either. It fascinates me that people have to ask the question, what to feed a child when you can't count on verity in packaging.  Please, feed them whole food, organic whenever possible.

  • buy viagra

    7/12/2010 1:37:38 PM |

    Sterol can be pretty dangerous as trans fat or sugar. So FDA must ban it too for the sake of our population. I wonder whatswhy FDA doesn't search healthy alternatives for us.

  • buy jeans

    11/3/2010 6:59:07 PM |

    They do indeed perform as advertised. Add either product to your daily diet and LDL cholesterol is reduced by about 10-15%. In fact, in the original Track Your Plaque book, these products were advocated as a supplemental means of reducing LDL when other methods fell short.

Loading